Deep brain stimulation (DBS) is increasingly applied to the treatment of brain disorders, but its mechanism of action remains unknown. Here, we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the β rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive β phase locking of motor cortex neurons.
An important mechanism for large-scale interactions between cortical areas involves coupling between the phase and the amplitude of different brain rhythms. Could basal ganglia disease disrupt this mechanism? We answered this question by analysis of local field potentials recorded from the primary motor cortex (M1) arm area in patients undergoing neurosurgery. In Parkinson disease, coupling between β-phase (13-30 Hz) and γ-amplitude (50-200 Hz) in M1 is exaggerated compared with patients with craniocervical dystonia and humans without a movement disorder. Excessive coupling may be reduced by therapeutic subthalamic nucleus stimulation. Peaks in M1 γ-amplitude are coupled to, and precede, the subthalamic nucleus β-trough. The results prompt a model of the basal ganglia-cortical circuit in Parkinson disease incorporating phase-amplitude interactions and abnormal corticosubthalamic feedback and suggest that M1 local field potentials could be used as a control signal for automated programming of basal ganglia stimulators.electrocorticography | cross-frequency coupling
Hyperkinetic states are common in human movement disorders, but their neural basis remains uncertain. One such condition is dyskinesia, a serious adverse effect of medical and surgical treatment for Parkinson's disease (PD). To study this, we used a novel, totally implanted, bidirectional neural interface to obtain multisite long-term recordings. We focus our analysis on two patients with PD who experienced frequent dyskinesia and studied them both at rest and during voluntary movement. We show that dyskinesia is associated with a narrowband gamma oscillation in motor cortex between 60 and 90 Hz, a similar, though weaker, oscillation in subthalamic nucleus, and strong phase coherence between the two. Dyskinesia-related oscillations are minimally affected by voluntary movement. When dyskinesia persists during therapeutic deep brain stimulation (DBS), the peak frequency of this signal shifts to half the stimulation frequency. These findings suggest a circuit-level mechanism for the generation of dyskinesia as well as a promising control signal for closed-loop DBS.
Objective: To determine whether providing remote neurologic care into the homes of people with Parkinson disease (PD) is feasible, beneficial, and valuable.Methods: In a 1-year randomized controlled trial, we compared usual care to usual care supplemented by 4 virtual visits via video conferencing from a remote specialist into patients' homes. Primary outcome measures were feasibility, as measured by the proportion who completed at least one virtual visit and the proportion of virtual visits completed on time; and efficacy, as measured by the change in the Parkinson's Disease Questionnaire-39, a quality of life scale. Secondary outcomes included quality of care, caregiver burden, and time and travel savings.Results: A total of 927 individuals indicated interest, 210 were enrolled, and 195 were randomized.Participants had recently seen a specialist (73%) and were largely college-educated (73%) and white (96%). Ninety-five (98% of the intervention group) completed at least one virtual visit, and 91% of 388 virtual visits were completed. Quality of life did not improve in those receiving virtual house calls (0.3 points worse on a 100-point scale; 95% confidence interval [CI] 22.0 to 2.7 points; p 5 0.78) nor did quality of care or caregiver burden. Each virtual house call saved patients a median of 88 minutes (95% CI 70-120; p , 0.0001) and 38 miles per visit (95% CI 36-56; p , 0.0001).Conclusions: Providing remote neurologic care directly into the homes of people with PD was feasible and was neither more nor less efficacious than usual in-person care. Virtual house calls generated great interest and provided substantial convenience.ClinicalTrials.gov identifier: NCT02038959.
In Parkinson’s disease (PD), striatal dopamine denervation results in a cascade of abnormalities in the single unit activity of downstream basal ganglia nuclei that include increased firing rate, altered firing patterns, and increased oscillatory activity. However, the effects of these abnormalities on cortical function are poorly understood. Here, in humans undergoing deep brain stimulator implantation surgery, we utilize the novel technique of subdural electrocorticography in combination with subthalamic nucleus (STN) single unit recording to study basal ganglia-cortex interactions at the millisecond time scale. We show that in patients with PD, STN spiking is synchronized with primary motor cortex (M1) local field potentials in two distinct patterns: First, STN spikes are phase-synchronized with M1 rhythms in the theta, alpha, or beta (4-30 Hz) bands. Second, STN spikes are synchronized with M1 gamma activity over a broad spectral range (50-200 Hz). The amplitude of STN spike-synchronized gamma activity in M1 is itself rhythmically modulated by the phase of a lower frequency rhythm (phase-amplitude coupling), such that “waves” of phase-synchronized gamma activity precede the occurrence of STN spikes. We show the disease specificity of these phenomena in PD, by comparison with STN-M1 paired recordings performed in a group of patients with a different disorder, primary cranio-cervical dystonia. Our findings support a model of the basal ganglia-thalamocortical loop in PD in which gamma activity in primary motor cortex, modulated by the phase of low frequency rhythms, drives STN unit discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.