Using astrometric observations spanning more than a century and including a large set of
Tidal effects in planetary systems are the main driver in the orbital migration of natural satellites. They result from physical processes occurring deep inside celestial bodies, whose effects are rarely observable from surface imaging. For giant planet systems, the tidal migration rate is determined by poorly understood dissipative processes in the planet, and standard theories suggest an orbital expansion rate inversely proportional to the power 11/2 in distance 1 , implying little migration for outer moons such as Saturn's largest moon, Titan. Here, we use two independent measurements obtained with the Cassini spacecraft to measure Titans orbital expansion rate. We find Titan migrates away from Saturn at 11.3 ± 2.0 cm/year, corresponding to a tidal quality factor of Saturn of Q ' 100, and a migration timescale of roughly 10 Gyr. This rapid orbital expansion suggests Titan formed significantly closer to Saturn and has migrated outward to its current position. Our results for Titan and five other moons agree with the predictions of a resonance locking tidal theory 2 , sustained by excitation of inertial waves inside the planet. The associated tidal expansion is only weakly sensitive to orbital distance, motivating a revision of the evolutionary history of Saturns moon system. The resonance locking mechanism could operate in other systems such as stellar binaries and exoplanet systems, and it may allow for tidal dissipation to occur at larger orbital separations than previously believed.Saturn is orbited by 62 moons, and the intricate dynamics of this complex system provide clues about its formation and evolution. Of crucial importance are tidal interactions between the moons and the planet. Each moon raises a tidal bulge in the planet, and because Saturn rotates faster than the moons orbit, frictional processes within the planet cause the tidal bulge to lead in front of each moon. Each moon's tidal bulge pulls the moon forward such that it gains angular momentum and migrates outward, similar to the tidal evolution of the Earth-Moon system. However, in giant planets such as Saturn, the dissipative processes that determine the bulge lag 2
The Cassini Imaging Science Subsystem acquired high-resolution imaging data on the outer Saturnian moon, Phoebe, during Cassini's close flyby on 11 June 2004 and on Iapetus during a flyby on 31 December 2004. Phoebe has a heavily cratered and ancient surface, shows evidence of ice near the surface, has distinct layering of different materials, and has a mean density that is indicative of an ice-rock mixture. Iapetus's dark leading side (Cassini Regio) is ancient, heavily cratered terrain bisected by an equatorial ridge system that reaches 20 kilometers relief. Local albedo variations within and bordering Cassini Regio suggest mass wasting of ballistically deposited material, the origin of which remains unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.