The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data.
Background Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes may overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. Objective To investigate the ability of whole-exome screening methods to detect disease-causing variants in individuals with PIDDs. Methods Individuals with PIDDs from 278 families from 22 countries were investigated using whole-exome sequencing (WES). Computational CNV prediction pipelines and an exome-tiling chromosomal microarray were also applied to identify intragenic copy number variants (CNVs). Analytic approaches initially focused on 475 known or candidate PIDD genes, but were non-exclusive and were further tailored based upon clinical data, family history and immunophenotyping. Results A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on the molecular findings. Twelve PIDD-causing CNVs were detected, including seven smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. Conclusion This high-throughput genomic approach enabled detection of disease-related variants in unexpected genes, permitted detection of low-grade constitutional, somatic and revertant mosaicism, and provided evidence of a mutational burden in mixed PIDD immunophenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.