Ectodermal dysplasias comprise over 150 syndromes of unknown pathogenesis. X-linked anhidrotic ectodermal dysplasia (EDA) is characterized by abnormal hair, teeth and sweat glands. We now describe the positional cloning of the gene mutated in EDA. Two exons, separated by a 200-kilobase intron, encode a predicted 135-residue transmembrane protein. The gene is disrupted in six patients with X;autosome translocations or submicroscopic deletions; nine patients had point mutations. The gene is expressed in keratinocytes, hair follicles, and sweat glands, and in other adult and fetal tissues. The predicted EDA protein may belong to a novel class with a role in epithelial-mesenchymal signalling.
Neurofibromatosis type 1 (NF1) is characterized by cafe-au-lait spots, skinfold freckling, and cutaneous neurofibromas. No obvious relationships between small mutations (<20 bp) of the NF1 gene and a specific phenotype have previously been demonstrated, which suggests that interaction with either unlinked modifying genes and/or the normal NF1 allele may be involved in the development of the particular clinical features associated with NF1. We identified 21 unrelated probands with NF1 (14 familial and 7 sporadic cases) who were all found to have the same c.2970-2972 delAAT (p.990delM) mutation but no cutaneous neurofibromas or clinically obvious plexiform neurofibromas. Molecular analysis identified the same 3-bp inframe deletion (c.2970-2972 delAAT) in exon 17 of the NF1 gene in all affected subjects. The Delta AAT mutation is predicted to result in the loss of one of two adjacent methionines (codon 991 or 992) ( Delta Met991), in conjunction with silent ACA-->ACG change of codon 990. These two methionine residues are located in a highly conserved region of neurofibromin and are expected, therefore, to have a functional role in the protein. Our data represent results from the first study to correlate a specific small mutation of the NF1 gene to the expression of a particular clinical phenotype. The biological mechanism that relates this specific mutation to the suppression of cutaneous neurofibroma development is unknown.
Mutations in the methyl-CpG-binding protein gene MECP2 at Xq28 cause Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder characterized by a period of stagnation followed by regression in the development of young girls. Mutations were sought in MECP2 in 48 females with classical sporadic RTT, seven families with possible familial RTT and five sporadic females with features suggestive, but not diagnostic of RTT. Long distance PCR coupled with long-read direct sequencing was employed to sequence the entire MECP2 gene coding region in all cases. Mutations were identified in 44/55 (80%) unrelated classical sporadic and familial RTT patients, but only 1/5 (20%) sporadic cases with suggestive but non-diagnostic features of RTT. Twenty-one different mutations were identified (12 missense, four nonsense and five frame-shift mutations); 14 of these were novel. All missense mutations were located either in the methyl-CpG-binding domain or in the transcription repression domain. Nine recurrent mutations were characterized in a total of 33 unrelated cases (73% of all cases with MECP2 mutations). Significantly milder disease was noted in patients carrying missense mutations as compared with those with truncating mutations ( P = 0. 0023), and milder disease was associated with late as compared with early truncating mutations ( P = 0.0190).
About 10% of neurofibromatosis type 1 (NF1) patients develop malignant peripheral nerve sheath tumors (MPNSTs) and represent considerable patient morbidity and mortality. Elucidation of the genetic mechanisms by which inherited and acquired NF1 disease gene variants lead to MPNST development is important. A study was undertaken to identify the constitutional and somatic NF1 mutations in 34 MPNSTs from 27 NF1 patients. The NF1 germline mutations identified in 22 lymphocytes DNA from these patients included seven novel mutations and a large 1.4-Mb deletion. The NF1 germline mutation spectrum was similar to that previously identified in adult NF1 patients without MPNST. Somatic NF1 mutations were identified in tumor DNA from 31 out of 34 MPNSTs, of which 28 were large genomic deletions. The high prevalence (>90%) of such deletions in MPNST contrast with the =or<20% found in benign neurofibromas and is indicative of the involvement of different mutational mechanisms in these tumors. Coinactivation of the TP53 gene by deletion, or by point mutation along with NF1 gene inactivation, is known to exacerbate disease symptoms in NF1, therefore TP53 gene inactivation was screened. DNA from 20 tumors showed evidence for loss of heterozygosity (LOH) across the TP53 region in 11 samples, with novel TP53 point mutations in four tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.