Age-related vascular endothelial dysfunction is a major antecedent to cardiovascular diseases. We investigated whether increased circulating levels of the gut microbiome-generated metabolite trimethylamine-N-oxide induces endothelial dysfunction with aging. In healthy humans, plasma trimethylamine-N-oxide was higher in middle-aged/older (64±7 years) versus young (22±2 years) adults (6.5±0.7 versus 1.6±0.2 µmol/L) and inversely related to brachial artery flow-mediated dilation ( r 2 =0.29, P <0.00001). In young mice, 6 months of dietary supplementation with trimethylamine-N-oxide induced an aging-like impairment in carotid artery endothelium-dependent dilation to acetylcholine versus control feeding (peak dilation: 79±3% versus 95±3%, P <0.01). This impairment was accompanied by increased vascular nitrotyrosine, a marker of oxidative stress, and reversed by the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. Trimethylamine-N-oxide supplementation also reduced activation of endothelial nitric oxide synthase and impaired nitric oxide-mediated dilation, as assessed with the nitric oxide synthase inhibitor L-NAME (N G -nitro-L-arginine methyl ester). Acute incubation of carotid arteries with trimethylamine-N-oxide recapitulated these events. Next, treatment with 3,3-dimethyl-1-butanol for 8 to 10 weeks to suppress trimethylamine-N-oxide selectively improved endothelium-dependent dilation in old mice to young levels (peak: 90±2%) by normalizing vascular superoxide production, restoring nitric oxide-mediated dilation, and ameliorating superoxide-related suppression of endothelium-dependent dilation. Lastly, among healthy middle-aged/older adults, higher plasma trimethylamine-N-oxide was associated with greater nitrotyrosine abundance in biopsied endothelial cells, and infusion of the antioxidant ascorbic acid restored flow-mediated dilation to young levels, indicating tonic oxidative stress-related suppression of endothelial function with higher circulating trimethylamine-N-oxide. Using multiple experimental approaches in mice and humans, we demonstrate a clear role of trimethylamine-N-oxide in promoting age-related endothelial dysfunction via oxidative stress, which may have implications for prevention of cardiovascular diseases.
Key points The results of the present study establish the temporal pattern of age‐related vascular dysfunction across the adult lifespan in sedentary mice consuming a non‐Western diet, and the underlying mechanisms The results demonstrate that consuming a Western diet accelerates and exacerbates vascular ageing across the lifespan in sedentary mice They also show that lifelong voluntary aerobic exercise has remarkable protective effects on vascular function throughout the lifespan, in the setting of ageing alone, as well as ageing compounded by Western diet consumption Overall, the results indicate that amelioration of mitochondrial oxidative stress and inflammation are key mechanisms underlying the voluntary aerobic exercise‐associated preservation of vascular function across the lifespan in both the presence and absence of a Western dietary pattern Abstract Advancing age is the major risk factor for cardiovascular diseases, driven largely by vascular endothelial dysfunction (impaired endothelium‐dependent dilatation, EDD) and aortic stiffening (increased aortic pulse wave velocity, aPWV). In humans, vascular ageing occurs in the presence of differences in diet and physical activity, but the interactive effects of these factors are unknown. We assessed carotid artery EDD and aPWV across the lifespan in mice consuming standard (normal) low‐fat chow (NC) or a high‐fat/high‐sucrose Western diet (WD) in the absence (sedentary, SED) or presence (voluntary wheel running, VWR) of aerobic exercise. Ageing impaired nitric oxide‐mediated EDD (peak EDD 88 ± 12% 6 months P = 0.003 vs. 59 ± 9% 27 months NC‐SED), which was accelerated by WD (60 ± 18% 6 months WD‐SED). In NC mice, aPWV increased 32% with age (423 ± 13 cm/s at 24 months P < 0.001 vs. 321 ± 12 cm/s at 6 months) and absolute values were an additional ∼10% higher at any age in WD mice (P = 0.042 vs. NC‐SED). Increases in aPWV with age in NC and WD mice were associated with 30–65% increases in aortic intrinsic wall stiffness (6 vs. 19–27 months, P = 0.007). Lifelong aerobic exercise prevented age‐ and WD‐related vascular dysfunction across the lifespan, and this protection appeared to be mediated by mitigation of vascular mitochondrial oxidative stress and inflammation. Our results depict the temporal impairment of vascular function over the lifespan in mice, acceleration and exacerbation of that dysfunction with WD consumption, the remarkable protective effects of voluntary aerobic exercise, and the underlying mechanisms.
Aging is associated with stiffening of the large elastic arteries and consequent increases in systolic blood pressure (SBP), which together increase cardiovascular disease risk; however, the upstream mechanisms are incompletely understood. Using complementary translational approaches in mice and humans, we investigated the role of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) in age-related aortic stiffening and increased SBP. Aortic stiffness was measured using carotid-femoral or aortic pulse wave velocity (PWV) in humans and mice, respectively. Study 1: Plasma TMAO concentrations were elevated ( P <0.001) in healthy middle-aged to older (6.3±5.8 µmol/L) versus young (1.8±1.4 µmol/L) humans and positively related to carotid-femoral PWV ( r 2 =0.15, P <0.0001) and SBP ( r 2 =0.09, P <0.001), independent of traditional cardiovascular risk factors. Study 2: Dietary supplementation with TMAO increased aPWV in young mice and exacerbated the already elevated aPWV of old mice, accompanied by increases in SBP of ≈10 mm Hg in both groups. TMAO-supplemented versus control-fed mice also had higher intrinsic mechanical stiffness of the aorta (stress-strain testing) associated with higher aortic abundance of advanced glycation end-products, which form crosslinks between structural proteins to promote aortic stiffening. Study 3: Ex vivo incubation of aortic rings with TMAO increased intrinsic stiffness, which was attenuated by the advanced glycation end-products crosslink breaker alagebrium and prevented by inhibition of superoxide signaling. TMAO induces aortic stiffening and increases SBP via formation of advanced glycation end-products and superoxide-stimulated oxidative stress, which together increase intrinsic wall stiffness. Increases in circulating TMAO with aging represent a novel therapeutic target for reducing risk of aortic stiffening-related clinical disorders.
We assessed the efficacy of oral supplementation with the flavanoid apigenin on arterial function during aging and identified critical mechanisms of action. Young (6 months) and old (27 months) C57BL/6N mice (model of arterial aging) consumed drinking water containing vehicle (0.2% carboxymethylcellulose; 10 young, 7 old) or apigenin (0.5 mg/ml in vehicle; 10 young, 9 old) for 6 weeks. In vehicle-treated animals, isolated carotid artery endothelium-dependent dilation (EDD), bioassay of endothelial function, was impaired in old vs young (70±9 vs 92±1 %, P<0.0001) due to reduced nitric oxide (NO) bioavailability. Old mice had greater arterial reactive oxygen species (ROS) production and oxidative stress (higher nitrotyrosine) associated with greater nicotinamide adenine dinucleotide phosphate oxidase (oxidant enzyme) and lower superoxide dismutase 1 and 2 (antioxidant enzymes); ex vivo administration of TEMPOL (antioxidant) restored EDD to young levels, indicating ROS-mediated suppression of EDD. Old animals also had greater aortic stiffness as indicated by higher aortic pulse wave velocity (PWV, 434±9 vs 346±5 cm/sec, P<0.0001) due to greater intrinsic aortic wall stiffness associated with lower elastin levels and higher collagen, advanced glycation end-products (AGEs) and pro-inflammatory cytokine abundance. In old mice, apigenin restored EDD (96±2%) by increasing NO bioavailability, normalized arterial ROS, oxidative stress and antioxidant expression, and abolished ROS inhibition of EDD. Moreover, apigenin prevented foam cell formation in vitro (initiating step in atherosclerosis) and mitigated age-associated aortic stiffening (PWV 373±5 cm/sec) by normalizing aortic intrinsic wall stiffness, collagen, elastin, AGEs, and inflammation. Thus, apigenin is a promising therapeutic for arterial aging.
BACKGROUND Doxorubicin (DOXO) chemotherapy increases risk for cardiovascular disease in part by inducing endothelial dysfunction in conduit arteries. However, the mechanisms mediating DOXO-associated endothelial dysfunction in (intact) arteries and treatment strategies are not established. OBJECTIVES We tested the hypothesis that DOXO impairs endothelial function in conduit arteries via excessive mitochondrial reactive oxygen species (ROS) and that these effects could be prevented by treatment with a mitochondrial-targeted antioxidant (MitoQ). METHODS Endothelial function (endothelium-dependent dilation [EDD] to acetylcholine) and vascular mitochondrial ROS were assessed 4 weeks following administration (10 mg/kg intraperitoneal injection) of DOXO. A separate cohort of mice received chronic (4 weeks) oral supplementation with MitoQ (drinking water) for 4 weeks following DOXO. RESULTS EDD in isolated pressurized carotid arteries was 55% lower 4 weeks following DOXO (peak EDD, DOXO: 42 ± 7% vs. sham: 94 ± 3%; p = 0.006). Vascular mitochondrial ROS was 52% higher and manganese (mitochondrial) superoxide dismutase was 70% lower after DOXO versus sham (p = 0.0008). Endothelial function was rescued by administration of the mitochondrial-targeted antioxidant, MitoQ, to the perfusate. Exposure to plasma from DOXO-treated mice increased mitochondrial ROS in cultured endothelial cells. Analyses of plasma showed differences in oxidative stress-related metabolites and a marked reduction in vascular endothelial growth factor A in DOXO mice, and restoring vascular endothelial growth factor A to sham levels normalized mitochondrial ROS in endothelial cells incubated with plasma from DOXO mice. Oral MitoQ supplementation following DOXO prevented the reduction in EDD (97 ± 1%; p = 0.002 vs. DOXO alone) by ameliorating mitochondrial ROS suppression of EDD. CONCLUSIONS DOXO-induced endothelial dysfunction in conduit arteries is mediated by excessive mitochondrial ROS and ameliorated by mitochondrial-specific antioxidant treatment. Mitochondrial ROS is a viable therapeutic target for mitigating arterial dysfunction with DOXO. (J Am Coll Cardiol CardioOnc 2020;2:475–88) © 2020 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.