BACKGROUND: Germline mutations in the BRCA2 cancer susceptibility gene are associated with an increased risk of pancreatic cancer (PC). Breast-pancreas cancer families with BRCA1 mutations have also been observed. The influence of a family history (FH) of PC on BRCA mutation prevalence in patients with breast cancer (BC) is unknown. METHODS: A clinical database review (2000-2009) identified 211 Ashkenazi Jewish (AJ) BC probands who 1) underwent BRCA1/2 mutation analysis by full gene sequencing or directed testing for Ashkenazi founder mutations (BRCA1: 185delAG and 5382insC; BRCA2: 6174delT) and 2) had a FH of PC in a first-, second-, or third-degree relative. For each proband, the pretest probability of identifying a BRCA1/2 mutation was estimated using the Myriad II model. The observed-to-expected (O:E) mutation prevalence was calculated for the entire group. RESULTS: Of the 211 AJ BC probands with a FH of PC, 30 (14.2%) harbored a BRCA mutation. Fourteen (47%) of the mutations were in BRCA1 and 16 (53%) were in BRCA2. Patients diagnosed with BC at age 50 years were found to have a higher BRCA1/2 mutation prevalence than probands with BC who were diagnosed at age > 50 years (21.1% vs 6.9%; P ¼ .003). In patients with a first-, second-, or third-degree relative with PC, mutation prevalences were 15.4%, 15.3%, and 8.6%, respectively (P ¼ .58). In the overall group, the observed BRCA1/2 mutation prevalence was 14.2% versus an expected prevalence of 11.8% (O:E ratio, 1.21; P ¼ .15). CONCLUSIONS: BRCA1 and BRCA2 mutations are observed with nearly equal distribution in AJ breast-pancreas cancer families, suggesting that both genes are associated with PC risk. In this population, a FH of PC was found to have a limited effect on mutation prevalence. Cancer 2012;118:493-
The genetics of lymphoma susceptibility reflect the marked heterogeneity of diseases that comprise this broad phenotype. However, multiple subtypes of lymphoma are observed in some families, suggesting shared pathways of genetic predisposition to these pathologically distinct entities. Using a two-stage GWAS, we tested 530,583 SNPs in 944 cases of lymphoma, including 282 familial cases, and 4,044 public shared controls, followed by genotyping of 50 SNPs in 1,245 cases and 2,596 controls. A novel region on 11q12.1 showed association with combined lymphoma (LYM) subtypes. SNPs in this region included rs12289961 near LPXN, (PLYM = 3.89×10−8, OR = 1.29) and rs948562 (PLYM = 5.85×10−7, OR = 1.29). A SNP in a novel non-HLA region on 6p23 (rs707824, PNHL = 5.72×10−7) was suggestive of an association conferring susceptibility to lymphoma. Four SNPs, all in a previously reported HLA region, 6p21.32, showed genome-wide significant associations with follicular lymphoma. The most significant association with follicular lymphoma was for rs4530903 (PFL = 2.69×10−12, OR = 1.93). Three novel SNPs near the HLA locus, rs9268853, rs2647046, and rs2621416, demonstrated additional variation contributing toward genetic susceptibility to FL associated with this region. Genes implicated by GWAS were also found to be cis-eQTLs in lymphoblastoid cell lines; candidate genes in these regions have been implicated in hematopoiesis and immune function. These results, showing novel susceptibility regions and allelic heterogeneity, point to the existence of pathways of susceptibility to both shared as well as specific subtypes of lymphoid malignancy.
Background SLX4 encodes a DNA repair protein that regulates three structure-specific endonucleases and is necessary for resistance to DNA crosslinking agents, topoisomerase I and poly (ADP-ribose) polymerase (PARP) inhibitors. Recent studies have reported mutations in SLX4 in a new subtype of Fanconi anemia (FA), FA-P. Monoallelic defects in several FA genes are known to confer susceptibility to breast and ovarian cancers.Methods and ResultsTo determine if SLX4 is involved in breast cancer susceptibility, we sequenced the entire SLX4 coding region in 738 (270 Jewish and 468 non-Jewish) breast cancer patients with 2 or more family members affected by breast cancer and no known BRCA1 or BRCA2 mutations. We found a novel nonsense (c.2469G>A, p.W823*) mutation in one patient. In addition, we also found 51 missense variants [13 novel, 23 rare (MAF<0.1%), and 15 common (MAF>1%)], of which 22 (5 novel and 17 rare) were predicted to be damaging by Polyphen2 (score = 0.65–1). We performed functional complementation studies using p.W823* and 5 SLX4 variants (4 novel and 1 rare) cDNAs in a human SLX4-null fibroblast cell line, RA3331. While wild type SLX4 and all the other variants fully rescued the sensitivity to mitomycin C (MMC), campthothecin (CPT), and PARP inhibitor (Olaparib) the p.W823* SLX4 mutant failed to do so.ConclusionLoss-of-function mutations in SLX4 may contribute to the development of breast cancer in very rare cases.
Although heritable factors are an important determinant of risk of early-onset cancer, the majority of these malignancies appear to occur sporadically without identifiable risk factors. Germline de novo copy-number variations (CNVs) have been observed in sporadic neurocognitive and cardiovascular disorders. We explored this mechanism in 382 genomes of 116 early-onset cancer case-parent trios and unaffected siblings. Unique de novo germline CNVs were not observed in 107 breast or colon cancer trios or controls but were indeed found in 7% of 43 testicular germ cell tumor trios; this percentage exceeds background CNV rates and suggests a rare de novo genetic paradigm for susceptibility to some human malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.