The interaction of Prep1 and Pbx homeodomain transcription factors regulates their activity, nuclear localization, and likely, function in development. To understand the in vivo role of Prep1, we have analyzed an embryonic lethal hypomorphic mutant mouse (Prep1 i/i ). Prep1 i/i embryos die at embryonic day 17.5 (E17.5) to birth with an overall organ hypoplasia, severe anemia, impaired angiogenesis, and eye anomalies, particularly in the lens and retina. The anemia correlates with delayed differentiation of erythroid progenitors and may be, at least in part, responsible for intrauterine death. At E14.5, Prep1 is present in fetal liver (FL) cMyb-positive cells, whose deficiency causes a marked hematopoietic phenotype. Prep1 is also localized to FL endothelial progenitors, consistent with the observed angiogenic phenotype. Likewise, at the same gestational day, Prep1 is present in the eye cells that bear Pax6, implicated in eye development. The levels of cMyb and Pax6 in FL and in the retina, respectively, are significantly decreased in Prep1 i/i embryos, consistent with the hematopoietic and eye phenotypes. Concomitantly, Prep1 deficiency results in the overall decrease of protein levels of its related family member Meis1 and its partners Pbx1 and Pbx2. As both Prep1 and Meis interact with Pbx, the overall Prep1/Meis-Pbx DNA-binding activity is strongly reduced in whole Prep1 i/i embryos and their organs. Our data indicate that Prep1 is an essential gene that acts upstream of and within a Pbx-Meis network that regulates multiple aspects of embryonic development.
The primate cerebrum is characterized by a large expansion of cortical surface area, the formation of convolutions, and extraordinarily voluminous subcortical white matter. It was recently proposed that this expansion is primarily driven by increased production of superficial neurons in the dramatically enlarged outer subventricular zone (oSVZ). Here, we examined the development of the parietal cerebrum in macaque monkey and found that, indeed, the oSVZ initially adds neurons to the superficial layers II and III, increasing their thickness. However, as the oSVZ grows in size, its output changes to production of astrocytes and oligodendrocytes, which in primates outnumber cerebral neurons by a factor of three. After the completion of neurogenesis around embryonic day (E) 90, when the cerebrum is still lissencephalic, the oSVZ enlarges and contains Pax6 + /Hopx + outer (basal) radial glial cells producing astrocytes and oligodendrocytes until after E125. Our data indicate that oSVZ gliogenesis, rather than neurogenesis, correlates with rapid enlargement of the cerebrum and development of convolutions, which occur concomitantly with the formation of cortical connections via the underlying white matter, in addition to neuronal growth, elaboration of dendrites, and amplification of neuropil in the cortex, which are primary factors in the formation of cerebral convolutions in primates.cerebral cortex | brain development | corticogenesis | brain convolutions | glia C ortical development is characterized by the orderly, sequential production of neurons followed by glia, and upon their generation, these cell types must migrate long distances to their final destinations (1-5). The principal stem cells for excitatory neurons and glial cells are the radial glial cells (RGCs) whose bodies are situated in the ventricular zone (VZ) (4-6). In all mammals, including marsupials, daughter cells of RGCs give rise to progenitors that lose their apical attachment to the VZ surface and populate the subventricular zone (SVZ), which is small in rodents but much larger and more complex in carnivores and primates (7-10). In many gyrencephalic mammals, the SVZ can be divided into the inner (iSVZ) and outer (oSVZ) layers, which are separated by an inner fiber layer (IFL) and differ in terms of gene expression and complement of neural progenitor subtypes. The oSVZ compartment becomes very prominent in primates, including humans, and contains detached RGCs (11), recently renamed as outer radial glia (oRG) or basal radial glia (bRG) (5). Knowledge about the number, types, and sequences of neurons and glia generated from cortical progenitor cells is essential for understanding cortical development and evolution as well as deciphering the mechanisms of neurodevelopmental diseases, including those that affect gyrification, e.g., lissencephaly and polymicrogyria (12,13).Recently it has been postulated that the remarkable enlargement of the oSVZ and its addition of neurons to the superficial layers (III and II) is critical for the 1,000-fold expansi...
Human induced pluripotent stem cells (hiPSCs) are a powerful model of neural differentiation and maturation. We present a hiPSC transcriptomics resource on corticogenesis from 5 iPSC donor and 13 subclonal lines across 9 time points over 5 broad conditions: self-renewal, early neuronal differentiation, neural precursor cells (NPCs), assembled rosettes, and differentiated neuronal cells. We identify widespread changes in the expression of both individual features and global patterns of transcription. We next demonstrate that co-culturing human NPCs with rodent astrocytes results in mutually synergistic maturation, and that cell type-specific expression data can be extracted using only sequencing read alignments without cell sorting. We lastly adapt a previously generated RNA deconvolution approach to single-cell expression data to estimate the relative neuronal maturity of iPSC-derived neuronal cultures and human brain tissue. Using many public datasets, we demonstrate neuronal cultures are maturationally heterogeneous but contain subsets of neurons more mature than previously observed.
The Prep1 homeodomain transcription factor is essential for embryonic development. 25% of hypomorphic Prep1(i/i) embryos, expressing the gene at 2% of the normal levels, survive pregnancy and live a normal-length life. Later in life, however, these mice develop spontaneous pre-tumoral lesions or solid tumors (lymphomas and carcinomas). In addition, transplantation of E14.5 fetal liver (FL) Prep1(i/i) cells into lethally irradiated mice induces lymphomas. In agreement with the above data, haploinsufficiency of a different Prep1-deficient (null) allele accelerates EmuMyc lymphoma growth. Therefore Prep1 has a tumor suppressor function in mice. Immunohistochemistry on tissue micrroarrays (TMA) generated from three distinct human cohorts comprising a total of some 1000 human tumors revealed that 70% of the tumors express no or extremely low levels of Prep1, unlike normal tissues. Our data in mice are thus potentially relevant to human cancer.
Prep1 is a homeodomain transcription factor that is essential in embryonic development and functions in the adult as a tumor suppressor. We show here that Prep1 is involved in maintaining genomic stability and preventing neoplastic transformation. Hypomorphic homozygous Prep1 i/i fetal liver cells and mouse embryonic fibroblasts (MEFs) exhibit increased basal DNA damage and normal DNA damage response after γ-irradiation compared with WT. Cytogenetic analysis shows the presence of numerous chromosomal aberrations and aneuploidy in very early-passage Prep1 i/i MEFs. In human fibroblasts, acute Prep1 down-regulation by siRNA induces DNA damage response, like in Prep1 i/i MEFs, together with an increase in heterochromatin-associated modifications: rapid increase of histone methylation and decreased transcription of satellite DNA. Ectopic expression of Prep1 rescues DNA damage and heterochromatin methylation. Inhibition of Suv39 activity blocks the chromatin but not the DNA damage phenotype. Finally, Prep1 deficiency facilitates cell immortalization, escape from oncogeneinduced senescence, and H-Ras V12 -dependent transformation. Importantly, the latter can be partially rescued by restoration of Prep1 level. The results show that the tumor suppressor role of Prep1 is associated with the maintenance of genomic stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.