Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment but strongly interacts with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on micro- and astroglia and trigger an innate immune response, characterized by the release of inflammatory mediators, which contribute to disease progression and severity. Genome wide analysis suggests that several genes, which increase the risk for sporadic Alzheimer's disease en-code for factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity are likely to interfere with the immunological processes of the brain and further promote disease progression. This re-view provides an overview on the current knowledge and focuses on the most recent and exciting findings. Modulation of risk factors and intervention with the described immune mechanisms are likely to lead to future preventive or therapeutic strategies for Alzheimer's disease.
Ischemic stroke triggers lipid peroxidation and neuronal injury. Docosahexaenoic acid released from membrane phospholipids during brain ischemia is a major source of lipid peroxides. Leukocyte infiltration and pro-inflammatory gene expression also contribute to stroke damage. In this study using lipidomic analysis, we have identified stereospecific messengers from docosahexaenoate-oxygenation pathways in a mouse stroke model. Aspirin, widely used to prevent cerebrovascular disease, activates an additional pathway, which includes the 17R-resolvins. The newly discovered brain messenger 10,17S-docosatriene potently inhibited leukocyte infiltration, NFB, and cyclooxygenase-2 induction in experimental stroke and elicited neuroprotection. In addition, in neural cells in culture, this lipid messenger also inhibited both interleukin 1--induced NFB activation and cyclooxygenase-2 expression. Thus, the specific novel bioactive docosanoids generated in vivo counteract leukocyte-mediated injury as well as pro-inflammatory gene induction. These results challenge the view that docosahexaenoate only participates in brain damage and demonstrate that this fatty acid is also the endogenous precursor to a neuroprotective signaling response to ischemia-reperfusion.
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.
Deficiency in docosahexaenoic acid (DHA), a brain-essential omega-3 fatty acid, is associated with cognitive decline. Here we report that, in cytokine-stressed human neural cells, DHA attenuates amyloid-beta (Abeta) secretion, an effect accompanied by the formation of NPD1, a novel, DHA-derived 10,17S-docosatriene. DHA and NPD1 were reduced in Alzheimer disease (AD) hippocampal cornu ammonis region 1, but not in the thalamus or occipital lobes from the same brains. The expression of key enzymes in NPD1 biosynthesis, cytosolic phospholipase A2 and 15-lipoxygenase, was altered in AD hippocampus. NPD1 repressed Abeta42-triggered activation of proinflammatory genes while upregulating the antiapoptotic genes encoding Bcl-2, Bcl-xl, and Bfl-1(A1). Soluble amyloid precursor protein-alpha stimulated NPD1 biosynthesis from DHA. These results indicate that NPD1 promotes brain cell survival via the induction of antiapoptotic and neuroprotective gene-expression programs that suppress Abeta42-induced neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.