This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Background Coronavirus disease 2019 (COVID-19) is a global public health problem that has already caused more than 662,000 deaths worldwide. Although the clinical manifestations of COVID-19 are dominated by respiratory symptoms, some patients present other severe damage such as cardiovascular, renal and liver injury or/and multiple organ failure, suggesting a spread of the SARS-CoV-2 in blood. Recent ultrasensitive polymerase chain reaction (PCR) technology now allows absolute quantification of nucleic acids in plasma. We herein intended to use the droplet-based digital PCR technology to obtain sensitive detection and precise quantification of plasma SARS-CoV-2 viral load (SARS-CoV-2 RNAaemia) in hospitalized COVID-19 patients. Methods Fifty-eight consecutive COVID-19 patients with pneumonia 8 to 12 days after onset of symptoms and 12 healthy controls were analyzed. Disease severity was categorized as mild-to-moderate in 17 patients, severe in 16 patients and critical in 26 patients. Plasma SARS-CoV-2 RNAaemia was quantified by droplet digital Crystal Digital PCR™ next-generation technology (Stilla Technologies, Villejuif, France). Results Overall, SARS-CoV-2 RNAaemia was detected in 43 (74.1%) patients. Prevalence of positive SARS-CoV-2 RNAaemia correlated with disease severity, ranging from 53% in mild-to-moderate patients to 88% in critically ill patients (p=0.036). Levels of SARS-CoV-2 RNAaemia were associated with severity (p=0.035). Among nine patients who experienced clinical deterioration during follow-up, eight had positive SARS-CoV-2 RNAaemia at baseline while only one critical patient with undetectable SARS-CoV-2 RNAaemia at the time of analysis died at day 27. Conclusion SARS-CoV-2 RNAaemia measured by droplet-based digital PCR constitutes a promising prognosis biomarker in COVID-19 patients
The SARS-CoV-2 B.1.617 lineage emerged in October 2020 in India. It has since then become dominant in some indian regions and further spread to many countries. The lineage includes three main subtypes (B1.617.1, B.1617.2 and B.1.617.3), which harbour diverse Spike mutations in the N-terminal domain (NTD) and the receptor binding domain (RBD) which may increase their immune evasion potential. B.1.617.2 is believed to spread faster than the other versions. Here, we isolated infectious B.1.617.2 from a traveller returning from India. We examined its sensitivity to monoclonal antibodies (mAbs) and to antibodies present in sera from COVID-19 convalescent individuals or vaccine recipients, in comparison to other viral lineages. B.1.617.2 was resistant to neutralization by some anti-NTD and anti-RBD mAbs, including Bamlanivimab, which were impaired in binding to the B.1.617.2 Spike. Sera from convalescent patients collected up to 12 months post symptoms and from Pfizer Comirnaty vaccine recipients were 3 to 6 fold less potent against B.1.617.2, relative to B.1.1.7. Sera from individuals having received one dose of AstraZeneca Vaxzevria barely inhibited B.1.617.2. Thus, B.1.617.2 spread is associated with an escape to antibodies targeting non-RBD and RBD Spike epitopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.