Oceanographic observations from the Eurasian Basin north of Svalbard collected between January and June 2015 from the N‐ICE2015 drifting expedition are presented. The unique winter observations are a key contribution to existing climatologies of the Arctic Ocean, and show a ∼100 m deep winter mixed layer likely due to high sea ice growth rates in local leads. Current observations for the upper ∼200 m show mostly a barotropic flow, enhanced over the shallow Yermak Plateau. The two branches of inflowing Atlantic Water are partly captured, confirming that the outer Yermak Branch follows the perimeter of the plateau, and the inner Svalbard Branch the coast. Atlantic Water observed to be warmer and shallower than in the climatology, is found directly below the mixed layer down to 800 m depth, and is warmest along the slope, while its properties inside the basin are quite homogeneous. From late May onwards, the drift was continually close to the ice edge and a thinner surface mixed layer and shallower Atlantic Water coincided with significant sea ice melt being observed.
Seven ice mass balance instruments deployed near 83°N on different first‐year and second‐year ice floes, representing variable snow and ice conditions, documented the evolution of snow and ice conditions in the Arctic Ocean north of Svalbard in January–March 2015. Frequent profiles of temperature and thermal diffusivity proxy were recorded to distinguish changes in snow depth and ice thickness with 2 cm vertical resolution. Four instruments documented flooding and snow‐ice formation. Flooding was clearly detectable in the simultaneous changes in thermal diffusivity proxy, increased temperature, and heat propagation through the underlying ice. Slush then progressively transformed into snow‐ice. Flooding resulted from two different processes: (i) after storm‐induced breakup of snow‐loaded floes and (ii) after loss of buoyancy due to basal ice melt. In the case of breakup, when the ice was cold and not permeable, rapid flooding, probably due to lateral intrusion of seawater, led to slush and snow‐ice layers at the ocean freezing temperature (−1.88°C). After the storm, the instruments documented basal sea‐ice melt over warm Atlantic waters and ocean‐to‐ice heat flux peaked at up to 400 W m−2. The warm ice was then permeable and flooding was more gradual probably involving vertical intrusion of brines and led to colder slush and snow‐ice (−3°C). The N‐ICE2015 campaign provided the first documentation of significant flooding and snow‐ice formation in the Arctic ice pack as the slush partially refroze. Snow‐ice formation may become a more frequently observed process in a thinner ice Arctic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.