Purpose Data suggest that DNA damage by poly (ADP-ribose) polymerase inhibition and/or reduced vascular endothelial growth factor signaling by vascular endothelial growth factor receptor inhibition may complement antitumor activity of immune checkpoint blockade. We hypothesize the programmed death-ligand 1 (PD-L1) inhibitor, durvalumab, olaparib, or cediranib combinations are tolerable and active in recurrent women's cancers. Patients and Methods This phase I study tested durvalumab doublets in parallel 3 + 3 dose escalations. Durvalumab was administered at 10 mg/kg every 2 weeks or 1,500 mg every 4 weeks with either olaparib tablets twice daily or cediranib on two schedules. The primary end point was the recommended phase II dose (RP2D). Response rate and pharmacokinetic analysis were secondary end points. Results Between June 2015 and May 2016, 26 women were enrolled. The RP2D was durvalumab 1,500 mg every 4 weeks with olaparib 300 mg twice a day, or cediranib 20 mg, 5 days on/2 days off. No dose-limiting toxicity was recorded with durvalumab plus olaparib. The cediranib intermittent schedule (n = 6) was examined because of recurrent grade 2 and non-dose-limiting toxicity grade 3 and 4 adverse events (AEs) on the daily schedule (n = 8). Treatment-emergent AEs included hypertension (two of eight), diarrhea (two of eight), pulmonary embolism (two of eight), pulmonary hypertension (one of eight), and lymphopenia (one of eight). Durvalumab plus intermittent cediranib grade 3 and 4 AEs were hypertension (one of six) and fatigue (one of six). Exposure to durvalumab increased cediranib area under the curve and maximum plasma concentration on the daily, but not intermittent, schedules. Two partial responses (≥15 months and ≥ 11 months) and eight stable diseases ≥ 4 months (median, 8 months [4 to 14.5 months]) were seen in patients who received durvalumab plus olaparib, yielding an 83% disease control rate. Six partial responses (≥ 5 to ≥ 8 months) and three stable diseases ≥ 4 months (4 to ≥ 8 months) were seen in 12 evaluable patients who received durvalumab plus cediranib, for a 50% response rate and a 75% disease control rate. Response to therapy was independent of PD-L1 expression. Conclusion To our knowledge, this is the first reported anti-PD-L1 plus olaparib or cediranib combination therapy. The RP2Ds of durvalumab plus olaparib and durvalumab plus intermittent cediranib are tolerable and active. Phase II studies with biomarker evaluation are ongoing.
SummaryBackground Targeting the cell-surface receptor EphA2, which is highly expressed in some solid tumors, is a novel approach for cancer therapy. We aimed to evaluate the safety profile, maximum tolerated dose (MTD), pharmacokinetics, and antitumor activity of MEDI-547, an antibody drug conjugate composed of the cytotoxic drug auristatin (toxin) linked to a human anti-EphA2 monoclonal antibody (1C1), in patients with solid tumors relapsed/refractory to standard therapy. Methods In this phase 1, open-label study with planned dose-escalation and dose-expansion cohorts, patients received a 1-h intravenous infusion of MEDI-547 (0.08 mg/kg) every 3 weeks. Results Six patients received 0.08 mg/kg; all discontinued treatment. Dose escalation was not pursued. The study was stopped before cohort 2 enrollment due to treatment-related bleeding and coagulation events (hemorrhage-related, n = 3; epistaxis, n = 2). Therefore, lower doses were not explored and an MTD could not be selected. The most frequently reported treatment-related adverse events (AEs) were increased liver enzymes, decreased hemoglobin, decreased appetite, and epistaxis. Three patients (50%) experienced treatment-related serious AEs, including conjunctival hemorrhage, pain (led to study drug discontinuation), liver disorder, and hemorrhage. Best response included progressive disease (n = 5; 83.3%) and stable disease (n = 1; 16.7%). Minimal or no dissociation of toxin from 1C1 conjugate occurred in the blood. Serum MEDI-547 concentrations decreased rapidly, ~70% by 3 days post-dose. No accumulation of MEDI-547 was observed at 0.08 mg/kg upon administration of a second dose 3 weeks following dose 1. Conclusions The safety profile of MEDI-547 does not support further clinical investigation in patients with advanced solid tumors.
Background Inhibitors of Apoptosis Proteins (IAPs) are key regulators of apoptosis, and are frequently dysregulated in ovarian cancer. We hypothesized that blocking IAPs with birinapant would increase tumor cell death resulting in objective response for women with platinum-refractory and resistant ovarian cancer. Methods In this phase II CTEP-sponsored study, patients received birinapant 47mg/m2 on days 1, 8, 15 of 28-day cycles. Pharmacokinetics were obtained in cycle 1. Plasma, peripheral blood mononuclear cells (PBMC) and percutaneous tumor biopsies were collected prior to cycle 1, and after 6 weeks. The primary endpoint was objective response or progression-free survival lasting greater than 6 months in a mini-max design. Results Eleven patients received birinapant, after which accrual was terminated for lack of clinical benefit. Birinapant was well-tolerated, with predominantly grade 2 adverse events (AE) and one grade 3 lymphopenia. Pre-treatment biopsies and PBMCs were collected; paired post-treatment biopsies and PBMC were collected from 7 and 10 patients, respectively. There was consistent downregulation of cIAP1 in tumor (P=0.016) and PBMC (P<0.01). Pro-caspase3 also decreased in tumors (P=0.031) and PBMC (P<0.01); cleaved caspase3 co-localized with gamma-H2AX in tumors after birinapant exposure. Peripheral T- and B-cells decreased significantly post-treatment, but NK-cells did not (P=0.04, P=0.05, P=0.43 respectively). Conclusion Birinapant shows consistent target suppression in vivo, without single agent anti-tumor activity in this small population. Single agent pharmacodynamics were necessary to understand drug mechanism of action and set the stage for rational combination therapy. Preclinical studies are ongoing to identify optimal synergistic combinations for future clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.