Evolutionary constraint and acceleration are powerful, cell-type agnostic measures of functional importance. Previous studies in mammals were limited by species number and reliance on human-referenced alignments. We explore the evolution of placental mammals, including humans, through reference-free whole-genome alignment of 240 species and protein-coding alignments for 428 species. We estimate 10.7% of the human genome is evolutionarily constrained. We resolve constraint to single nucleotides, pinpointing functional positions, and refine and expand by over seven-fold the catalog of ultraconserved elements. Overall, 48.5% of constrained bases are as yet unannotated, suggesting yet-to-be-discovered functional importance. Using species-level phenotypes and an updated phylogeny, we associate coding and regulatory variation with olfaction and hibernation. Focusing on biodiversity conservation, we identify genomic metrics that predict species at risk of extinction.
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth’s vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA (Tool to infer Orthologs from Genome Alignments), a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared with state-of-the-art methods, and handles even highly fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. TOGA is a powerful and scalable method to annotate and compare genes in the genomic era.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.