SUMMARY Initiation of pancreatic ductal adenocarcinoma (PDA) is definitively linked to activating mutations in the KRAS oncogene. However, PDA mouse models show that mutant Kras expression early in development gives rise to a normal pancreas, with tumors forming only after a long latency or pancreatitis induction. Here we show that oncogenic KRAS upregulates endogenous EGFR expression and activation, the latter being dependent upon the EGFR ligand sheddase, ADAM17. Genetic ablation or pharmacological inhibition of EGFR or ADAM17 effectively eliminates KRAS-driven tumorigenesis in vivo. Without EGFR activity, active RAS levels are not sufficient to induce robust MEK/ERK activity, a requirement for epithelial transformation.
Recent advances in molecular subtyping of Pancreatic Ductal Adenocarcinoma (PDAC) support individualization of therapeutic strategies in this most aggressive disease. With the emergence of various novel therapeutic strategies and neoadjuvant approaches in this quickly deteriorating disease, robust approaches for fast evaluation of therapy response are urgently needed. To this aim, we designed a preclinical imaging-guided therapy trial where genetically engineered mice harboring endogenous aggressive PDAC were treated with the MEK targeting drug refametinib, which induces rapid and profound tumor regression in this model system. Multi-parametric non-invasive imaging was used for therapy response monitoring. A significant increase in the Diffusion-Weighted Magnetic Resonance Imaging derived Apparent Diffusion Coefficient (ADC) was noted already 24 hours after treatment onset. Histopathological analyses showed increased apoptosis and matrix remodeling at this time point. Our findings suggest the ADC parameter as an early predictor of therapy response in PDAC.
Pancreatic ductal adenocarcinoma (PDAC) is likely the most aggressive and therapy-resistant of all cancers. The aim of this study was to investigate the emerging technology of matrixassisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) as a powerful tool to study drug delivery and spatial tissue distribution in PDAC. We utilized an established genetically engineered mouse model of spontaneous PDAC to examine the distribution of the small-molecule inhibitor erlotinib in healthy pancreas and PDAC. MALDI IMS was utilized on sections of single-dose or long-term-treated mice to measure drug tissue distribution. Histologic and statistical analyses were performed to correlate morphology, drug distribution, and survival. We found that erlotinib levels were significantly lower in PDAC compared with healthy tissue (P ¼ 0.0078). Survival of long-term-treated mice did not correlate with overall levels of erlotinib or with overall histologic tumor grade but did correlate both with the percentage of atypical glands in the cancer (P ¼ 0.021, r s ¼ 0.59) and the level of erlotinib in those atypical glands (P ¼ 0.019, r s ¼ 0.60). The results of this pilot study present MALDI IMS as a reliable technology to study drug delivery and spatial distribution of compounds in a preclinical setting and support drug imagingbased translational approaches. Mol Cancer Ther; 15(5);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.