Hearing aid users are challenged in listening situations with noise and especially speech-on-speech situations with two or more competing voices. Specifically, the task of attending to and segregating two competing voices is particularly hard, unlike for normal-hearing listeners, as shown in a small sub-experiment. In the main experiment, the competing voices benefit of a deep neural network (DNN) based stream segregation enhancement algorithm was tested on hearing-impaired listeners. A mixture of two voices was separated using a DNN and presented to the two ears as individual streams and tested for word score. Compared to the unseparated mixture, there was a 13%-point benefit from the separation, while attending to both voices. If only one output was selected as in a traditional target-masker scenario, a larger benefit of 37%-points was found. The results agreed well with objective metrics and show that for hearing-impaired listeners, DNNs have a large potential for improving stream segregation and speech intelligibility in difficult scenarios with two equally important targets without any prior selection of a primary target stream. An even higher benefit can be obtained if the user can select the preferred target via remote control.
We investigate the short-term association between multidimensional acoustic characteristics of everyday ambient sound and continuous mean heart rate. We used in-market data from hearing aid users who logged ambient acoustics via smartphone-connected hearing aids and continuous mean heart rate in 5 min intervals from their own wearables. We find that acoustic characteristics explain approximately 4% of the fluctuation in mean heart rate throughout the day. Specifically, increases in ambient sound pressure intensity are significantly related to increases in mean heart rate, corroborating prior laboratory and short-term real-world data. In addition, increases in ambient sound quality—that is, more favourable signal to noise ratios—are associated with decreases in mean heart rate. Our findings document a previously unrecognized mixed influence of everyday sounds on cardiovascular stress, and that the relationship is more complex than is seen from an examination of sound intensity alone. Thus, our findings highlight the relevance of ambient environmental sound in models of human ecophysiology.
IntroductionThe holistic management of hearing loss (HL) requires an understanding of factors that predict hearing aid (HA) use and benefit beyond the acoustics of listening environments. Although several predictors have been identified, no study has explored the role of audiological, cognitive, behavioural and physiological data nor has any study collected real-time HA data. This study will collect ‘big data’, including retrospective HA logging data, prospective clinical data and real-time data via smart HAs, a mobile application and biosensors. The main objective is to enable the validation of the EVOTION platform as a public health policy-making tool for HL.Methods and analysisThis will be a big data international multicentre study consisting of retrospective and prospective data collection. Existing data from approximately 35 000 HA users will be extracted from clinical repositories in the UK and Denmark. For the prospective data collection, 1260 HA candidates will be recruited across four clinics in the UK and Greece. Participants will complete a battery of audiological and other assessments (measures of patient-reported HA benefit, mood, cognition, quality of life). Patients will be offered smart HAs and a mobile phone application and a subset will also be given wearable biosensors, to enable the collection of dynamic real-life HA usage data. Big data analytics will be used to detect correlations between contextualised HA usage and effectiveness, and different factors and comorbidities affecting HL, with a view to informing public health decision-making.Ethics and disseminationEthical approval was received from the London South East Research Ethics Committee (17/LO/0789), the Hippokrateion Hospital Ethics Committee (1847) and the Athens Medical Center’s Ethics Committee (KM140670). Results will be disseminated through national and international events in Greece and the UK, scientific journals, newsletters, magazines and social media. Target audiences include HA users, clinicians, policy-makers and the general public.Trial registration numberNCT03316287; Pre-results.
Ideally, public health policies are formulated from scientific data; however, policy-specific data are often unavailable. Big data can generate ecologically-valid, high-quality scientific evidence, and therefore has the potential to change how public health policies are formulated. Here, we discuss the use of big data for developing evidence-based hearing health policies, using data collected and analyzed with a research prototype of a data repository known as EVOTION (EVidence-based management of hearing impairments: public health pOlicy-making based on fusing big data analytics and simulaTION), to illustrate our points. Data in the repository consist of audiometric clinical data, prospective real-world data collected from hearing aids and an app, and responses to questionnaires collected for research purposes. To date, we have used the platform and a synthetic dataset to model the estimated risk of noiseinduced hearing loss and have shown novel evidence of ways in which external factors influence hearing aid usage patterns. We contend that this research prototype data repository illustrates the value of using big data for policy-making by providing high-quality evidence that could be used to formulate and evaluate the impact of hearing health care policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.