Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study’s protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community.
Iron content of the basal ganglia was investigated in 25 patients with idiopathic Parkinson's disease and 14 matched healthy control subjects using a partially refocused interleaved multiple echo sequence on a 1.5 Tesla MRI system. R(2)* (1/T(2)*) and R(2)' (1/T(2)') relaxation rates were higher in the substantia nigra of patients with Parkinson's disease, which indicates that iron content is elevated in this region. R(2)' was lower in the putamen, indicating reduced iron levels; reduction in this region was positively correlated with disease duration. Iron-related oxidative stress may contribute to the neurodegeneration of Parkinson's disease, which may lead to alterations in the iron levels of the striatum. We describe a simple, non-invasive technique for measuring iron content.
US National Multiple Sclerosis Society, Multiple Sclerosis Society of Great Britain and Northern Ireland, Novartis, UK National Institute for Health Research (NIHR), and NIHR UCLH/UCL Biomedical Research Centre.
Accurate and reliable quantification of brain metabolites measured in vivo using 1 H magnetic resonance spectroscopy (MRS) is a topic of continued interest in the field. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, we analyze spectrally edited -aminobutyric acid (GABA) MRS data and quantify GABA levels relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using standard GABA+ editing. Unsuppressed water acquisitions from the same volume of interest were acquired for signal referencing. Whole-brain T1-weighted structural images were acquired and tissue-segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA+ measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17%, which was largely driven by vendor-related differences according to a linear mixed-effects analysis. The mean within-site coefficient of variation was 9%. Vendor differences contributed 53% to the total variance in the data, while the remaining variance was attributed to site-(11%) and participant-level (36%) effects. Results from an exploratory analysis suggested that the vendor differences were related to the water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA+ measurements exhibit levels of variance similar to creatine-referenced GABA+ measurements. It is concluded that quantification using internal tissue water referencing remains a viable and reliable method for the in vivo quantification of GABA+ levels.
Objectives:Non-coeliac gluten sensitivity (NCGS) refers to patients with primarily gastrointestinal symptoms without enteropathy that symptomatically benefit from gluten-free diet (GFD). Little is known about its pathophysiology, propensity to neurological manifestations, and if these differ from patients with coeliac disease (CD). We investigated the clinical and immunological characteristics of patients presenting with neurological manifestations with CD and those with NCGS.Methods:We compared clinical, neurophysiological, and imaging data of patients with CD and NCGS presenting with neurological dysfunction assessed and followed up regularly over a period of 20 years.Results:Out of 700 patients, 562 were included. Exclusion criteria included no bowel biopsy to confirm CD, no HLA type available, and failure to adhere to GFD. All patients presented with neurological dysfunction and had circulating anti-gliadin antibodies. Out of 562 patients, 228 (41%) had evidence of enteropathy (Group 1, CD) and 334 (59%) did not (Group 2, NCGS). The most common neurological manifestations were cerebellar ataxia, peripheral neuropathy, and encephalopathy. There was a greater proportion of patients with encephalopathy in Group 1 and with a greater proportion of neuropathy in Group 2. The severity of ataxia did not differ between the two groups. Patients in Group 1 had more severe neuropathy. All patients from both groups responded to gluten-free diet. Anti-tissue transglutaminase (TG2) antibodies were found in 91% of patients in Group 1 and in 29% of patients in Group 2. Comparison between those patients in Group 2 with HLA-DQ2/DQ8 and those without as well as those with positive TG2 compared with those with negative TG2 antibodies identified no differences within these subgroups. Serological positivity for TG6 antibodies was similar in the two groups (67 and 60%).Conclusions:The neurological manifestations of CD and NCGS are similar and equally responsive to a GFD suggestive of common pathophysiological mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.