The structure of laser-shock-compressed polycrystalline iron was probed using in situ x-ray diffraction over a pressure range spanning the α-phase transition. Measurements were also made of the c/a ratio in the phase, which, in contrast with previous in situ x-ray diffraction experiments performed on single crystals and large scale molecular dynamics (MD) simulations are close to those found in high pressure diamond anvil cell experiments. This is consistent with the observation that significant plastic flow occurs within the nanosecond timescale of the experiment. Furthermore, within the sensitivity of the measurement technique, the FCC phase that had been predicted by MD simulations was not observed.
Under uniaxial high-stress shock compression it is believed that crystalline materials undergo complex, rapid, micro-structural changes to relieve the large applied shear stresses. Diagnosing the underlying mechanisms involved remains a significant challenge in the field of shock physics, and is critical for furthering our understanding of the fundamental lattice-level physics, and for the validation of multi-scale models of shock compression. Here we employ white-light X-ray Laue diffraction on a nanosecond timescale to make the first in situ observations of the stress relaxation mechanism in a laser-shocked crystal. The measurements were made on single-crystal copper, shocked along the [001] axis to peak stresses of order 50 GPa. The results demonstrate the presence of stress-dependent lattice rotations along specific crystallographic directions. The orientation of the rotations suggests that there is double slip on conjugate systems. In this model, the rotation magnitudes are consistent with defect densities of order 10 12 cm À 2 .
Calculations of the patterns of x-ray diffraction from shocked crystals derived from the results of non-equilibrium molecular dynamics (NEMD) simulations are presented. The atomic coordinates predicted from the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A fast Fourier transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.