The present investigation studied the chemical composition of the essential oils extracted from Dracocephalum integrifolium Bunge growing in three different localities in northwest China and evaluated the phytotoxic, antimicrobial and insecticidal activities of the essential oils as well as their major constituents, i.e., sabinene and eucalyptol. GC/MS analysis revealed the presence of 21–24 compounds in the essential oils, representing 94.17–97.71% of the entire oils. Monoterpenes were the most abundant substances, accounting for 85.30–93.61% of the oils; among them, sabinene (7.35–14.0%) and eucalyptol (53.56–76.11%) were dominant in all three oils, which occupied 67.56–83.46% of the total oils. In general, phytotoxic bioassays indicated that the IC50 values of the oils and their major constituents were below 2 μL/mL (1.739–1.886 mg/mL) against Amaranthus retroflexus and Poa annua. Disc diffusion method demonstrated that the oils and their major constituents possessed antimicrobial activity against Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Saccharomyces cerevisiae, and Candida albicans, with MIC values ranging from 5–40 μL/mL (4.347–37.712 mg/mL). The oils, sabinene and eucalyptol also exhibited significant pesticidal activity, with the mortality rates of Aphis pomi reaching 100% after exposing to 10 μL oil/petri dish (8.694–9.428 mg/petri dish) for 24 h. To the best of our knowledge, this is the first report on the chemical composition, phytotoxic, antimicrobial and insecticidal activity of the essential oils extracted from D. integrifolium; it is noteworthy to mention that this is also the first report on the phytotoxicity of one of the major constituents, sabinene. Our results imply that D. integrifolium oils and sabinene have the potential value of being further exploited as natural pesticides.
The chemical profile of Thymus proximus essential oil (EO) and its allelopathic, phytotoxic, and insecticidal activity was evaluated. Carvacrol, p-cymene, and γ-terpinene were detected as the major components of the EO, representing 85.9% of the total oil. About 50 g fresh plant material of T. proximus in a 1.5-L air tight container completely inhibited the seed germination of Amaranthus retroflexus and Poa anuua. Meanwhile, the EO exhibited potent phytotoxic activity, which resulted in 100% germination failure of both the test species when 2 mg/ml (for A. retroflexus) and 5 mg/ml (for Poa annua) oil was applied. The EO also triggered a significant insecticidal activity on Aphis gossypii with a LC50 value of 6.34 ppm. Carvacrol was identified as the main active compound responsible for both the plant suppressing effect and the insecticidal activity of the EO. Our study is the first on the allelopathic, phytotoxic, and insecticidal activity of T. proximus EO, and the determination of the responsible compound, which indicated their potential of being further explored as environment friendly biopesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.