PurposeMany anticancer drugs induce apoptosis in malignant cells, and resistance to apoptosis could lead to suboptimal or no therapeutic benefit. Two cytoplasmic proteins, B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) and Bcl-2, act as a promoter and an inhibitor of apoptosis, respectively. Both Bax and Bcl-2 as well as their ratio have been regarded as prognostic markers in various cancers. However, conflicting results have been reported. A clear understanding of apoptosis has also become crucial due to reports about anti-Bcl-2 chemotherapy. We explored the relationship of Bax and Bcl-2 gene expression and their ratio with the therapeutic response in acute myeloid leukemia (AML) patients.Patients and methodsBone marrow and/or blood samples from 90 AML patients treated with cytarabine and daunorubicin were included. Expression of Bax and Bcl-2 was determined through real-time polymerase chain reaction by using ΔΔCt method of relative expression.ResultsBax and Bcl-2 expression among marrow and blood samples correlated with each other (rs=0.5, p<0.01). Although bone marrow expression of Bax and Bcl-2 tended to remain higher among responders (median 1.01 and 0.29, respectively) as compared to non-responders (median 0.66 and 0.24, respectively), the difference failed to reach statistical significance (U=784.5 and 733; p=0.68 and 0.28, respectively). Conversely, Bax/Bcl-2 ratio was higher among poor responders (median 3.07 vs 1.78), though again failed to reach statistical significance (U=698.5, p=0.07).ConclusionExpression of Bax and Bcl-2 does not differ significantly among AML patients treated with cytarabine and daunorubicin in terms of remission, relapse, resistance, overall survival, and disease-free survival, thus questioning the utility of emerging anti-Bcl-2 therapy.
The Asia Oceania Human Proteome Organisation has embarked on a Membrane Proteomics Initiative with goals of systematic comparison of strategies for analysis of membrane proteomes and discovery of membrane proteins. This multi-laboratory project is based on analysis of a subcellular fraction from mouse liver that contains endoplasmic reticulum and other organelles. Here we present the strategy used for preparation and initial characterisation of the membrane sample, including validation that the carbonate-washing step enriches for integral and lipid-anchored membrane proteins. Analysis of seventeen independent datasets from five types of proteomic workflows is in progress.
Objective: To explore the potential of the GPIbα gene variable number tandem repeat (VNTR) and −5T/C Kozak polymorphisms to act as independent risk factors for myocardial infarction. Methods: 256 patients aged 33-80 years (180 caucasian, 76 Indian Asian) were recruited at cardiac catheterisation for any diagnostic indication, and divided into two groups: group A, with confirmed previous myocardial infarction evident on ECG or ventriculogram (88 patients, 79 men, 9 women) and group B, with no evidence of myocardial infarction (168 patients, 101 men, 67 women). Results: There was no significant difference in race, age, hypertension, smoking status, or family history between the infarct and non-infarct groups, though there was a significant difference in sex (89.8% male in group A, 60.1% male in group B, p < 0.001). Genotype analysis showed a strong association between the GPIbα Kozak homozygous TT genotype and the occurrence of myocardial infarction (group A: TT 85.2%, TC 12.5%, CC 2.3%; group B: TT 67.3%, TC 32.7%, p = 0.001). No significant association was found between myocardial infarction and the GPIbα VNTR, although analysis of the CC VNTR genotype against all other GPIbα VNTR genotypes showed a marginal association with myocardial infarction (p = 0.059). There was no association between the Kozak sequence polymorphism (p = 0.797) or GPIbα VNTR (p = 0.714) and the degree of vessel disease. Conclusions: The homozygous TT Kozak genotype may be a significant factor in the outcome of coronary artery disease completed by myocardial infarction. Conversely, the Kozak C allele in the heterozygous state TC may confer some protection against myocardial infarction.
J. Neurochem. (2012) 121, 954–963. Abstract Alzheimer’s disease (AD) is the most common form of dementia and cognitive impairment usually characterized by widespread neurodegeneration throughout the association cortex, limbic system and hippocampus. Aberrant protein phosphorylation is a defining pathological hallmark of AD and implicated in the dysregulation of major cellular processes through highly dynamic and complex signaling pathways. Here in, we demonstrate 81 proteins, of 600 spots selected, unambiguously identified as phosphorylated, providing a partial phosphoproteome profile of AD substantia nigra and cortex and respective control brain regions. More importantly, abnormal phosphorylation signal intensity of nine physiologically important proteins observed can profoundly affect cell metabolism, signal transduction, cytoskeleton integration, and synaptic function and accounts for biological and morphological alterations. Our studies employed two‐dimensional gel electrophoresis for protein separation, Pro‐Q® Diamond phosphoprotein staining and electrospray ionization quadrupole time of flight tandem MS for protein identification. NetPhosk 1.0 is used for the confirmation of protein modification status as well known/putative phosphoproteins. A further insight into the links among the identified phosphoproteins and functional roles STRING 8.3, KEGG and REACTOME pathway databases were applied. The present quantitative phosphoproteomic analysis can be supportive in establishing a broad database of potential protein targets of abnormal phosphorylation in AD brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.