Background We examined the dynamic response of the myocardium to infarction in a longitudinal porcine study using relaxometry, functional as well as diffusion cardiovascular magnetic resonance (CMR). We sought to compare non contrast CMR methods like relaxometry and in-vivo diffusion to contrast enhanced imaging and investigate the link of microstructural and functional changes in the acute and chronically infarcted heart. Methods CMR was performed on five myocardial infarction pigs and four healthy controls. In the infarction group, measurements were obtained 2 weeks before 90 min occlusion of the left circumflex artery, 6 days after ischemia and at 5 as well as 9 weeks as chronic follow-up. The timing of measurements was replicated in the control cohort. Imaging consisted of functional cine imaging, 3D tagging, T2 mapping, native as well as gadolinium enhanced T1 mapping, cardiac diffusion tensor imaging, and late gadolinium enhancement imaging. Results Native T1, extracellular volume (ECV) and mean diffusivity (MD) were significantly elevated in the infarcted region while fractional anisotropy (FA) was significantly reduced. During the transition from acute to chronic stages, native T1 presented minor changes (< 3%). ECV as well as MD increased from acute to the chronic stages compared to baseline: ECV: 125 ± 24% (day 6) 157 ± 24% (week 5) 146 ± 60% (week 9), MD: 17 ± 7% (day 6) 33 ± 14% (week 5) 29 ± 15% (week 9) and FA was further reduced: − 31 ± 10% (day 6) − 38 ± 8% (week 5) − 36 ± 14% (week 9). T2 as marker for myocardial edema was significantly increased in the ischemic area only during the acute stage (83 ± 3 ms infarction vs. 58 ± 2 ms control p < 0.001 and 61 ± 2 ms in the remote area p < 0.001). The analysis of functional imaging revealed reduced left ventricular ejection fraction, global longitudinal strain and torsion in the infarct group. At the same time the transmural helix angle (HA) gradient was steeper in the chronic follow-up and a correlation between longitudinal strain and transmural HA gradient was detected (r = 0.59 with p < 0.05). Comparing non-gadolinium enhanced data T2 mapping showed the largest relative change between infarct and remote during the acute stage (+ 33 ± 4% day 6, with p = 0.013 T2 vs. MD, p = 0.009 T2 vs. FA and p = 0.01 T2 vs. T1) while FA exhibited the largest relative change between infarct and remote during the chronic follow-up (+ 31 ± 2% week 5, with p = N.S. FA vs. MD, p = 0.03 FA vs. T2 and p = 0.003 FA vs. T1). Overall, diffusion parameters provided a higher contrast (> 23% for MD and > 27% for FA) during follow-up compared to relaxometry (T1 17–18%/T2 10–20%). Conclusion During chronic follow-up after myocardial infarction, cardiac diffusion tensor imaging provides a higher sensitivity for mapping microstructural alterations when compared to non-contrast enhanced relaxometry with the added benefit of providing directional tensor information to assess remodelling of myocyte aggregate orientations, which cannot be otherwise assessed.
Cardiac microvascular obstruction (MVO) associated with acute myocardial infarction (heart attack) is characterized by partial or complete elimination of perfusion in the myocardial microcirculation. A new catheter-based method (CoFI, Controlled Flow Infusion) has recently been developed to diagnose MVO in the catheterization laboratory during acute therapy of the heart attack. A porcine MVO model demonstrates that CoFI can accurately identify the increased hydraulic resistance of the affected microvascular bed. A benchtop microcirculation model was developed and tuned to reproduce in vivo MVO characteristics. The tuned benchtop model was then used to systematically study the effect of different levels of collateral flow. These experiments showed that measurements obtained in the catheter-based method were adversely affected such that collateral flow may be misinterpreted as MVO. Based on further analysis of the measured data, concepts to mitigate the adverse effects were formulated which allow discrimination between collateral flow and MVO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.