A large proportion of spinal cord injuries (SCI) are incomplete. Even in clinically complete injuries, silent non-functional connections can be present. Therapeutic approaches that can strengthen transmission in weak neural connections to improve motor performance are needed. Our aim was to determine whether long-term delivery of paired associative stimulation (PAS, a combination of transcranial magnetic stimulation [TMS] with peripheral nerve stimulation [PNS]) can enhance motor output in the hands of patients with chronic traumatic tetraplegia, and to compare this technique with long-term PNS. Five patients (4 males; age 38–68, mean 48) with no contraindications to TMS received 4 weeks (16 sessions) of stimulation. PAS was given to one hand and PNS combined with sham TMS to the other hand. Patients were blinded to the treatment. Hands were selected randomly. The patients were evaluated by a physiotherapist blinded to the treatment. The follow-up period was 1 month. Patients were evaluated with Daniels and Worthingham's Muscle Testing (0–5 scale) before the first stimulation session, after the last stimulation session, and 1 month after the last stimulation session. One month after the last stimulation session, the improvement in the PAS-treated hand was 1.02 ± 0.17 points (p < 0.0001, n = 100 muscles from 5 patients). The improvement was significantly higher in PAS-treated than in PNS-treated hands (176 ± 29%, p = 0.046, n = 5 patients). Long-term PAS might be an effective tool for improving motor performance in incomplete chronic SCI patients. Further studies on PAS in larger patient cohorts, with longer stimulation duration and at earlier stages after the injury, are warranted.
Emerging therapeutic strategies for spinal cord injury aim at sparing or restoring at least part of the corticospinal tract at the acute stage. Hence, approaches that strengthen the weak connections that are spared or restored are crucial. Transient plastic changes in the human corticospinal tract can be induced through paired associative stimulation, a noninvasive technique in which transcranial magnetic brain stimulation is synchronized with electrical peripheral nerve stimulation. A single paired associative stimulation session can induce transient plasticity in spinal cord injury patients. It is not known whether paired associative stimulation can strengthen neuronal connections persistently and have therapeutic effects that are clinically relevant. We recruited two patients with motor-incomplete chronic (one para-and one tetraplegic) spinal cord injuries. The patients received paired associative stimulation for 20-24 weeks. The paraplegic patient, previously paralyzed below the knee level, regained plantarflexion and dorsiflexion of the ankles of both legs. The tetraplegic patient regained grasping ability. The newly acquired voluntary movements could be performed by the patients in the absence of stimulation and for at least 1 month after the last stimulation session. In this unblinded proof-of-principle demonstration in two subjects, long-term paired associative stimulation induced persistent and clinically relevant strengthening of neural connections and restored voluntary movement in previously paralyzed muscles. Further study is needed to confirm whether long-term paired associative stimulation can be used in rehabilitation after spinal cord injury by itself and, possibly, in combination with other therapeutic strategies.
WDR11 has been implicated in congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS), human developmental genetic disorders defined by delayed puberty and infertility. However, WDR11's role in development is poorly understood. Here, we report that WDR11 modulates the Hedgehog (Hh) signalling pathway and is essential for ciliogenesis. Disruption of WDR11 expression in mouse and zebrafish results in phenotypic characteristics associated with defective Hh signalling, accompanied by dysgenesis of ciliated tissues. Wdr11‐null mice also exhibit early‐onset obesity. We find that WDR11 shuttles from the cilium to the nucleus in response to Hh signalling. WDR11 regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotrophin‐releasing hormone production. The CHH/KS‐associated human mutations result in loss of function of WDR11. Treatment with the Hh agonist purmorphamine partially rescues the WDR11 haploinsufficiency phenotypes. Our study reveals a novel class of ciliopathy caused by WDR11 mutations and suggests that CHH/KS may be a part of the human ciliopathy spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.