In this paper we describe a numerical method to solve numerically the weakly dispersive fully nonlinear SERRE-GREEN-NAGHDI (SGN) celebrated model. Namely, our scheme is based on reliable finite volume methods, proven to be very efficient for the hyperbolic part of equations. The particularity of our study is that we develop an adaptive numerical model using moving grids. Moreover, we use a special form of the SGN equations where non-hydrostatic part of pressure is found by solving a linear elliptic equation. Moreover, this form of governing equations allows to determine the natural form of boundary conditions to obtain a well-posed (numerical) problem.
Solutions to initial boundary value problems are constructed for the shallow water equations in the form of series locally convergent in the neighbourhood of a movable water-land boundary for an arbitrary bottom relief. The motion law and the velocity of this boundary are determined for various wave-shore interaction modes. The obtained results of analytic study of the solutions are used for the development of approximations of boundary conditions on the movable shoreline. Test problems are numerically solved using an explicit predictor-corrector scheme of the second order of approximation on adaptive grids retracing the position of the water-land boundary. The results of these calculations are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.