This is the first direct clinical evidence suggesting that TNF-alpha may be a therapeutic target in RCC. Plasma levels of TNF-alpha, IL-6, and CCL2 may have predictive and prognostic significance.
Development of chemoresistance limits the clinical efficiency of platinum-based therapy. Although many resistance mechanisms have been demonstrated, genetic/molecular alterations responsible for drug resistance in the majority of clinical cases have not been identified. We analyzed three pairs of testicular germ cell tumor cell lines using Affymetrix expression microarrays and revealed a limited number of differentially expressed genes across the cell lines when comparing the parental and resistant cells. Among them, CCND1 was the most significantly differentially expressed gene. Analysis of testicular germ cell tumor clinical samples by quantitative reverse transcription PCR analysis revealed that overall expression of CCND1 was significantly higher in resistant cases compared with sensitive samples (P < 0.0001). We also found that CCND1 was dramatically overexpressed both in induced and intrinsically resistant samples of ovarian and prostate cancer. Finally combined CCND1 knockdown using small-interfering RNA and cisplatin treatment inhibited cell growth in vitro significantly more effectively than any of these single treatments. Therefore, deregulation of CCND1 may be a major cause of cisplatin resistance in testicular germ cell tumors and may also be implicated in ovarian and prostate cancers. CCND1 could be potentially used as a marker for treatment stratification and as a molecular target to improve the treatment of platinum-resistant tumors. Cisplatin has dramatically improved the clinical outcome for testicular germ cell tumors (TGCTs) and remains the first line treatment of several other solid tumors such as, ovarian, breast, head and neck, and small cell lung cancers.
The adenoviral mutant dl922-947 has potent activity in a variety of tumors. We investigated the efficacy of dl922-947 in ovarian carcinoma; compared its activity to wild-type adenovirus, dl309, and dl1520; and investigated the use of icodextrin to enhance activity in vivo. We also assessed the utility of luciferase bioluminescence imaging to quantify the response of human ovarian carcinoma xenografts to dl922-947. Ovarian carcinoma cell lines were transfected in vitro with dl922-947, adenovirus 5 wild-type (Ad5 WT), dl309, and dl1520 and monitored for S-phase induction, viral protein expression, replication, and overall survival. In vivo, the efficacy of dl922-947 when delivered in PBS or icodextrin to female nude mice bearing IGROV1 xenografts was determined. In vitro, dl922-947 induced lysis with greater efficacy than Ad5 WT, dl309, or dl1520 in all ovarian carcinoma cell lines tested, which was associated with earlier expression of viral proteins and S-phase induction. The lytic effect in immortalized ovarian surface epithelial cells confirmed that cellular retinoblastoma pathway status is a strong determinant of dl922-947 activity. In vivo, i.p. delivery of dl922-947 (5  10 9 particles daily  5) increased median survival from 20 to 96 days (P < 0.0001) and delivery in icodextrin-enhanced survival further. However, delayed hepatic toxicity was evident in some dl922-947-treated mice, which was not dependent upon viral replication within tumor cells or the liver. dl922-947 has potency in ovarian carcinoma and i.p. delivery in icodextrin may enhance this activity. Immunocompetent models of ovarian carcinoma are required for further evaluation of hepatotoxicity. (Cancer Res 2006; 66(2): 989-98)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.