Cite this article as: Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature https://doi.The ongoing COVID-19 outbreak has spread rapidly on a global scale. While the transmission of SARS-CoV-2 via human respiratory droplets and direct contact is clear, the potential for aerosol transmission is poorly understood 1-3 . This study investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the COVID-19 outbreak in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols detected in isolation wards and ventilated patient rooms was very low, but it was elevated in the patients' toilet areas. Levels of airborne SARS-CoV-2 RNA in the majority of public areas was undetectable except in two areas prone to crowding, possibly due to infected carriers in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions showing peaks in submicrometre and/or supermicrometre regions, but these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted via aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.
Background:The ongoing outbreak of COVID-19 has spread rapidly and sparked global concern. While the transmission of SARS-CoV-2 through human respiratory droplets and contact with infected persons is clear, the aerosol transmission of SARS-CoV-2 has been little studied.Methods: Thirty-five aerosol samples of three different types (total suspended particle, size segregated and deposition aerosol) were collected in Patient Areas (PAA) and Medical Staff Areas (MSA) of Renmin Hospital of Wuhan University (Renmin) and Wuchang Fangcang Field Hospital (Fangcang), and Public Areas (PUA) in Wuhan, China during COVID-19 outbreak. A robust droplet digital polymerase chain reaction (ddPCR) method was employed to quantitate the viral SARS-CoV-2 RNA genome and determine aerosol RNA concentration. Results:The ICU, CCU and general patient rooms inside Renmin, patient hall inside Fangcang had undetectable or low airborne SARS-CoV-2 concentration but deposition samples inside ICU and air sample in Fangcang patient toilet tested positive. The airborne SARS-CoV-2 in Fangcang MSA had bimodal distribution with higher concentration than those in Renmin during the outbreak but turned negative after patients number reduced and rigorous sanitization implemented. PUA had undetectable airborne SARS-CoV-2 concentration but obviously increased with accumulating crowd flow. Conclusions:Room ventilation, open space, proper use and disinfection of toilet can effectively limit aerosol transmission of SARS-CoV-2. Gathering of crowds with asymptomatic carriers is a potential source of airborne SARS-CoV-2. The virus aerosol deposition on protective apparel or floor surface and their subsequent resuspension is a potential transmission pathway and effective sanitization is critical in minimizing aerosol transmission of SARS-CoV-2.
Background Epidemiological observations have demonstrated that ambient fine particulate matter with d p < 2.5 μm (PM 2.5 ) as the major factor responsible for the increasing incidence of lung cancer in never-smokers. However, there are very limited experimental data to support the association of PM 2.5 with lung carcinogenesis and to compare PM 2.5 with smoking carcinogens. Methods To study whether PM 2.5 can contribute to lung tumorigenesis in a way similar to smoking carcinogen 4-methylnitrosamino-l-3-pyridyl-butanone (NNK) via 15-lipoxygenases (15-LOXs) reduction, normal lung epithelial cells and cancer cells were treated with NNK or PM 2.5 and then epigenetically and post-translationally examined the cellular and molecular profiles of the cells. The data were verified in lung cancer samples and a mouse lung tumor model. Results We found that similar to smoking carcinogen NNK, PM2.5 significantly enhanced cell proliferation, migration and invasion, but reduced the levels of 15-lipoxygenases-1 (15-LOX1) and 15-lipoxygenases-2 (15-LOX2), both of which were also obviously decreased in lung cancer tissues. 15-LOX1/15-LOX2 overexpression inhibited the oncogenic cell functions induced by PM2.5/NNK. The tumor formation and growth were significantly higher/faster in mice implanted with PM2.5- or NNK-treated NCI-H23 cells, accompanied with a reduction of 15-LOX1/15-LOX2. Moreover, 15-LOX1 expression was epigenetically regulated at methylation level by PM2.5/NNK, while both 15-LOX1 and 15-LOX2 could be significantly inhibited by a set of PM2.5/NNK-mediated microRNAs. Conclusion Collectively, PM2.5 can function as the smoking carcinogen NNK to induce lung tumorigenesis by inhibiting 15-LOX1/15-LOX2. Electronic supplementary material The online version of this article (10.1186/s13046-019-1380-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.