BACKGROUND In patients with severe hemophilia B, gene therapy that is mediated by a novel self-complementary adeno-associated virus serotype 8 (AAV8) vector has been shown to raise factor IX levels for periods of up to 16 months. We wanted to determine the durability of transgene expression, the vector dose–response relationship, and the level of persistent or late toxicity. METHODS We evaluated the stability of transgene expression and long-term safety in 10 patients with severe hemophilia B: 6 patients who had been enrolled in an initial phase 1 dose-escalation trial, with 2 patients each receiving a low, intermediate, or high dose, and 4 additional patients who received the high dose (2×1012 vector genomes per kilogram of body weight). The patients subsequently underwent extensive clinical and laboratory monitoring. RESULTS A single intravenous infusion of vector in all 10 patients with severe hemophilia B resulted in a dose-dependent increase in circulating factor IX to a level that was 1 to 6% of the normal value over a median period of 3.2 years, with observation ongoing. In the high-dose group, a consistent increase in the factor IX level to a mean (±SD) of 5.1±1.7% was observed in all 6 patients, which resulted in a reduction of more than 90% in both bleeding episodes and the use of prophylactic factor IX concentrate. A transient increase in the mean alanine aminotransferase level to 86 IU per liter (range, 36 to 202) occurred between week 7 and week 10 in 4 of the 6 patients in the high-dose group but resolved over a median of 5 days (range, 2 to 35) after prednisolone treatment. CONCLUSIONS In 10 patients with severe hemophilia B, the infusion of a single dose of AAV8 vector resulted in long-term therapeutic factor IX expression associated with clinical improvement. With a follow-up period of up to 3 years, no late toxic effects from the therapy were reported. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00979238.)
Dominant optic atrophy (DOA) is the commonest form of inherited optic neuropathy. Although heterogeneous, a major locus has been mapped to chromosome 3q28 and the gene responsible, OPA1, was recently identified. We therefore screened a panel of 35 DOA patients for mutations in OPA1. This revealed 14 novel mutations and a further three known mutations, which together accounted for 20 of the 35 families (57%) included in this study. This more than doubles the number of OPA1 mutations reported in the literature, bringing the total to 25. These are predominantly null mutations generating truncated proteins, strongly suggesting that the mechanism underlying DOA is haploinsufficiency. The mutations are largely family-specific, although a common 4 bp deletion in exon 27 (eight different families) and missense mutations in exons 8 (two families) and 9 (two families) have been identified. Haplotype analysis of individuals with the exon 27 2708del(TTAG) mutation suggests that this is a mutation hotspot and not an ancient mutation, thus excluding a major founder effect at the OPA1 locus. The mutation screening in this study also identified a number of asymptomatic individuals with OPA1 mutations. A re-calculation of the penetrance of this disorder within two of our families indicates figures as low as 43 and 62% associated with the 2708del(TTAG) mutation. If haploinsufficiency is the mechanism underlying DOA it is unlikely that this figure will be mutation-specific, indicating that the penetrance in DOA is much lower than the 98% reported previously. To investigate whether Leber's hereditary optic neuropathy (LHON) could be caused by mutations in OPA1 we also screened a panel of 28 LHON patients who tested negatively for the three major LHON mutations. No mutations were identified in any LHON patients, indicating that DOA and LHON are genetically distinct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.