The genome of the mesopolyploid crop species Brassica rapaThe Brassica rapa Genome Sequencing Project Consortium 1 Abstract:The Brassicaceae family which includes Arabidopsis thaliana, is a natural priority for reaching beyond botanical models to more deeply sample angiosperm genomic and functional diversity. Here we report the draft genome sequence and its annoation of Brassica rapa, one of the two ancestral species of oilseed rape. We modeled 41,174 protein-coding genes in the B. rapa genome. B. rapa has experienced only the second genome triplication reported to date, with its close relationship to A. thaliana providing a useful outgroup for investigating many consequences of triplication for its structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one copy containing a greater proportion of genes expected to have been present in its ancestor (70%) than the remaining two (46% and 36%). Both a generally rapid evolutionary rate, and specific copy number amplifications of particular gene families, may contribute to the remarkable propensity of Brassica species for the development of new morphological variants. The B. rapa genome provides a new resource for comparative and evolutionary analysis of the Brassicaceae genomes and also a platform for genetic improvement of Brassica oil and vegetable crops.2
For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
Author contributions DCJ coordinated all analyses, isolated DNA for sequencing, analysed and filtered SNP calls, conducted diversity analysis and GWAS and drafted the manuscript. CR produced phenotype data for growth on various solid media and growth rates in liquid media. AR conducted analysis of dating using mitochondrial data. DS conducted GWAS. MP analysed all phenotype data. TM identified LTR transposon insertions and analysed transposon insertion data. FXM conducted crosses for analysis of spore viability ZI produced indel calls with Cortex. WL conducted analysis of recombination rate, linkage disequilibrium decay and PCA for distance between strains. TMKC assisted with phenotype and population analysis. RP analysed Cortex and GATK indel calls. MM conducted amino acid profiling. JLDL and AC produced automated measures of cell morphology. SB aligned reads and produced GATK SNP calls. GH analysed population structure using fineSTRUCTURE. BO'F estimated the TMRCA from the nuclear genome using ACG. TK identified LTR transposon insertions JTS produced de novo assemblies. LB developed the custom Workspace workflow Spotsizer. BT assisted with sequence analysis. DAB assisted with analysis of novel genes. TS assisted with strain verification. SC produced images of wild strains and assisted with strain verification. JEEUH assisted with SNP validation. LvT and MT assisted with LTR validation. LJ and JL assisted with manual measures of cell morphology and FACS. SA produced gene expression data. MF, KM and ND assisted with sequencing. WB initiated and assisted with strain collection. JH coordinated manual measures of cell morphology and FACS. RECS coordinated automated measures of cell morphology. MR coordinated amino acid profiling. NM conducted analysis of recombination, linkage disequilibrium and advised on aspects of diversity and GWAS. DJB advised on GWAS. RD facilitated sequencing. JB contributed to the initiation and development of the project and financed the JB laboratory. AccessionsSequence data are archived in the European Nucleotide Archive (www.ebi.ac.uk/ena/), Study Accessions PRJEB2733 and PRJEB6284 (Supplementary Table 7). All SNPs and indels were submitted to NCBI dbSNP (www.ncbi.nlm.nih.gov/SNP/). Accessions are 974514578-974688138 (SNPs) and 974702618-974688139 (indels). Europe PMC Funders Group AbstractNatural variation within species reveals aspects of genome evolution and function. The fission yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but researchers typically use one standard laboratory strain. To extend the utility of this model, we surveyed the genomic and phenotypic variation in 161 natural isolates. We sequenced the genomes of all strains, revealing moderate genetic diversity (π = 3 ×10 −3 ) and weak global population structure. We estimate that dispersal of S. pombe began within human antiquity (~340 BCE), and ancestors of these strains reached the Americas at ~1623 CE. We quantified 74 traits, revealing substantial heritable phenotypic diversity. We cond...
BackgroundAttine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive.ResultsIn order to test these possibilities we isolated bacteria from a geographically distinct population of A. octospinosus and identified a candicidin-producing Streptomyces species, which suggests that they are common mutualists of attine ants, most probably recruited from the environment. We also identified a Pseudonocardia species in the same ant colony that produces an unusual polyene antifungal, providing evidence for co-evolution of Pseudonocardia with A. octospinosus.ConclusionsOur results show that a combination of co-evolution and environmental sampling results in the diversity of actinomycete symbionts and antibiotics associated with attine ants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.