All rights reserved. No reuse allowed without permission.
Multiple system atrophy (MSA) is a neurodegenerative disorder that predominantly affects motor-related neuroanatomic structures. The role of microglia in MSA is unknown. To address this issue, we conducted quantitative image studies on the brains from 13 cases of MSA, comprising 8 cerebellar and 5 parkinsonian variants. Microglial and glial cytoplasmic inclusion (GCI) burdens were determined with image analysis on brain sections immunostained with antibodies to HLA-DR and alpha-synuclein. Many activated microglia, as well as GCIs, were noted in motor-related structures, including the cerebellar input, extrapyramidal motor, and pyramidal motor structures, but not in the cerebellar output structures. This result indicates that microglial activation, as well as the distribution of GCIs, is system-specific in MSA. The correlation analysis between the microglial and GCI burdens yielded variable yet significant correlations in the cerebellar input, extrapyramidal motor, and pyramidal motor systems, but not in the cerebellar output system. This result suggests that microglial activation is at least partly determined by GCIs or oligodendroglial alpha-synuclein in specific neuroanatomic systems affected in MSA. Taken together, considering the known toxic effects of microglia in neurodegenerative diseases, microglia may play a part in the development of system-specific tissue injuries, contributing to the system-bound clinical and pathological phenotypes.
A panel of radiochemicals has enabled in-vivo positron emission tomography (PET) of tau pathologies in Alzheimer′s disease (AD), while sensitive detection of frontotemporal lobar degeneration (FTLD) tau inclusions has been unsuccessful. Here, we generated an imaging probe, PM-PBB3, for capturing diverse tau deposits. In-vitro assays demonstrated the reactivity of this compound with tau pathologies in AD and FTLD. We could also utilize PM-PBB3 for optical/PET imaging of a living murine tauopathy model. A subsequent clinical PET study revealed increased binding of 18F-PM-PBB3 in diseased patients, reflecting cortical-dominant AD and subcortical-dominant PSP tau topologies. Notably, the in-vivo reactivity of 18F-PM-PBB3 with FTLD tau inclusion was strongly supported by neuropathological examinations of autopsied and biopsied brains derived from Pick′s disease, PSP and corticobasal degeneration patients who underwent PET scans. Finally, visual inspection of 18F-PM-PBB3-PET images was indicated to facilitate individually based identification of diverse clinical phenotypes of FTLD on the neuropathological basis.
Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis, necrosis, or autophagy. The progression of TRIAD was extremely slow in comparison with other types of cell death. Gene expression profiling revealed the reduction of full-length yes-associated protein (YAP), a p73 cofactor to promote apoptosis, as specific to TRIAD. Furthermore, novel neuron-specific YAP isoforms (YAPΔCs) were sustained during TRIAD to suppress neuronal death in a dominant-negative fashion. YAPΔCs and activated p73 were colocalized in the striatal neurons of HD patients and mutant huntingtin (htt) transgenic mice. YAPΔCs also markedly attenuated Htt-induced neuronal death in primary neuron and Drosophila melanogaster models. Collectively, transcriptional repression induces a novel prototype of neuronal death associated with the changes of YAP isoforms and p73, which might be relevant to the HD pathology.
Various neurotransmitters, such as dopamine, stimulate adenylyl cyclase to produce cAMP, which regulates neuronal functions. Genetic disruption of the type 5 adenylyl cyclase isoform led to a major loss of adenylyl cyclase activity in a striatum-specific manner with a small increase in the expression of a few other adenylyl cyclase isoforms. D1 dopaminergic agonist-stimulated adenylyl cyclase activity was attenuated, and this was accompanied by a decrease in the expression of the D1 dopaminergic receptor and G s ␣. D2 dopaminergic agonist-mediated inhibition of adenylyl cyclase activity was also blunted. Type 5 adenylyl cyclase-null mice exhibited Parkinsonian-like motor dysfunction, i.e. abnormal coordination and bradykinesia detected by Rotarod and pole test, respectively, and to a lesser extent locomotor impairment was detected by open field tests. Selective D1 or D2 dopaminergic stimulation improved some of these disorders in this mouse model, suggesting the partial compensation of each dopaminergic receptor signal through the stimulation of remnant adenylyl cyclase isoforms. These findings extend our knowledge of the role of an effector enzyme isoform in regulating receptor signaling and neuronal functions and imply that this isoform provides a site of convergence of both D1 and D2 dopaminergic signals and balances various motor functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.