We compile and analyze approximately 200 trigonometric parallaxes and proper motions of molecular masers associated with very young high-mass stars. Most of the measurements come from the BeSSeL Survey using the VLBA and
We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of the superhump period is found to be composed of three distinct stages: an early evolutionary stage with a longer superhump period, a middle stage with systematically varying periods, and a final stage with a shorter, stable superhump period. During the middle stage, many systems with superhump periods of less than 0.08 d show positive period derivatives. We present observational characteristics of these stages and give greatly improved statistics. Contrary to an earlier claim, we found no clear evidence for a variation of period derivatives among different superoutbursts of the same object. We present an interpretation that the lengthening of the superhump period is a result of the outward propagation of an eccentricity wave, which is limited by the radius near the tidal truncation. We interpret that late-stage superhumps are rejuvenated excitation of a 3:1 resonance when superhumps in the outer disk are effectively quenched. The general behavior of the period variation, particularly in systems with short orbital periods, appears to follow a scenario proposed in Kato, Maehara, and Monard (2008, PASJ, 60, L23). We also present an observational summary of WZ Sge-type dwarf novae. Many of them have shown long-enduring superhumps during a post-superoutburst stage having longer periods than those during the main superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to be strongly correlated with the fractional superhump excess, or consequently with the mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with multiple rebrightenings tend to have smaller period derivatives, and are excellent candidates for those systems around or after the period minimum of evolution of cataclysmic variables.
We present analyses to determine the fundamental parameters of the Galaxy based on VLBI astrometry of 52 Galactic maser sources obtained with VERA, VLBA and EVN. We model the Galaxy's structure with a set of parameters including the Galaxy center distance R 0 , the angular rotation velocity at the LSR Ω 0 , mean peculiar motion of the sources with respect to Galactic rotation (U src , V src , W src ), rotation-curve shape index, and the V component of the Solar peculiar motions V ⊙ . Based on a Markov chain Monte Carlo method, we find that the Galaxy center distance is constrained at a 5% level to be R 0 = 8.05 ± 0.45 kpc, where the error bar includes both statistical and systematic errors. We also find that the two components of the source peculiar motion U src and W src are fairly small compared to the Galactic rotation velocity, being U src = 1.0 ± 1.5 km s −1 and W src = −1.4 ± 1.2 km s −1 . Also, the rotation curve shape is found to be basically flat between Galacto-centric radii of 4 and 13 kpc. On the other hand, we find a linear relation between V src and V ⊙ as V src = V ⊙ − 19 (±2) km s −1 , suggesting that the value of V src is fully dependent on the adopted value of V ⊙ . Regarding the rotation speed in the vicinity of the Sun, we also find a strong correlation between Ω 0 and V ⊙ . We find that the angular velocity of the Sun, Ω ⊙ , which is defined as Ω ⊙ ≡ Ω 0 + V ⊙ /R 0 , can be well constrained with the best estimate of Ω ⊙ = 31.09 ± 0.78 km s −1 kpc −1 . This corresponds to Θ 0 = 238 ± 14 km s −1 if one adopts the above value of R 0 and recent determination of V ⊙ ∼12 km s −1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.