Ferritin is an iron-binding molecule, which comprises 24 subunits, heavy (FeH) and light (FeL) subunits, suggested to have a pathogenic role by the 'hyperferritinemic syndrome'. In this work, we tested (1) FeH and FeL in bone marrow (BM) and sera in patients with macrophage activation syndrome (MAS); (2) pro-inflammatory effects of ferritin, FeL, and FeH on macrophages; (3) ability of FeHstimulated macrophages to stimulate the proliferation of peripheral blood mononuclear cells (PBMCs); (4) production of mature IL-1β and IL-12p70 in extracellular compartments of FeH-stimulated macrophages. Immunofluorescence analysis and liquid chromatography mass spectrometry (LC-MS/ MS) based proteomics were performed to identify FeL and FeH in BM and sera, respectively, in the same patients. Macrophages were stimulated with ferritin, FeH, and FeL to assess pro-inflammatory effects by RT-PCR and western blot. The proliferation of co-cultured PBMCs with FeH-stimulated macrophages was tested. Immunofluorescence showed an increased FeH expression in BMs, whereas LC-MS/MS identified that FeL was mainly represented in sera. FeH induced a significant increase of gene expressions of IL-1β, IL-6, IL-12, and TNF-α, more marked with FeH, which also stimulated NLRP3. FeH-stimulated macrophages enhanced the proliferation of PBMCs. The ELISA assays showed that mature form of IL-1β and IL-12p70 were increased, in extracellular compartments of FeHstimulated macrophages. Our results showed FeH in BM biopsies of MAS patients, whereas, LC-MS/ MS identified FeL in the sera. FeH showed pro-inflammatory effects on macrophages, stimulated NLRP3, and increased PBMCs proliferation. Adult-onset Still's disease (AOSD) is an inflammatory disease characterised by high spiking fevers, arthritis, evanescent skin rash, and a typical increase of serum ferritin levels 1,2. AOSD is considered a multigenic autoinflammatory disease at the "crossroads" of autoinflammatory and autoimmune diseases, considering its complex pathogenesis, which involves both arms of the immune system 3. The aberrant activation of the immune system leads to production and release of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-18, interferon (IFN)-γ and tumor necrosis factor (TNF-α) 1-3 , which represent common therapeutic targets 4,5. Patients with AOSD may experience several life-threatening complications, mostly macrophage activation syndrome (MAS), a hyperinflammatory syndrome, with high mortality rate 6,7. Considering the frequent association between these two diseases, it has been suggested that MAS and AOSD may be anchored to the same disease spectrum, representing more severe and milder form, respectively 8. Continuous high fever, hepatosplenomegaly, severe peripheral blood cytopenia, high serum ferritin levels, and haemophagocytosis by activated macrophages in bone marrow (BM) are typical features of these patients 9. A multi-layer MAS pathogenic model has been suggested,
BackgroundFibrosis may be considered the hallmark of systemic sclerosis (SSc), the end stage triggered by different pathological events. Transforming growth factor-β (TGF-β) and platelet-derived growth factor BB (PDGF-BB) are profibrotic molecules modulating myofibroblast differentiation and proliferation, respectively. There is evidence linking CD248 with these two molecules, both highly expressed in patients with SSc, and suggesting that CD248 may be a therapeutic target for several diseases. The aim of this work was to evaluate the expression of CD248 in SSc skin and its ability to modulate SSc fibrotic process.MethodsAfter ethical approval was obtained, skin biopsies were collected from 20 patients with SSc and 10 healthy control subjects (HC). CD248 expression was investigated in the skin, as well as in bone marrow mesenchymal stem cells (MSCs) treated with TGF-β or PDGF-BB, by immunofluorescence, qRT-PCR, and Western blotting. Finally, in SSc-MSCs, the CD248 gene was silenced by siRNA.ResultsIncreased expression of CD248 was found in endothelial cells and perivascular stromal cells of SSc skin. In SSc-MSCs, the levels of CD248 and α-smooth muscle actin expression were significantly higher than in HC-MSCs. In both SSc- and HC-MSCs, PDGF-BB induced increased expression of Ki-67 when compared with untreated cells but was unable to modulate CD248 levels. After CD248 silencing, both TGF-β and PDGF-BB signaling were inhibited in SSc-MSCs.ConclusionsCD248 overexpression may play an important role in the fibrotic process by modulating the molecular target, leading to perivascular cells differentiation toward myofibroblasts and interfering with its expression, and thus might open a new therapeutic strategy to inhibit myofibroblast generation during SSc.
Objective During rheumatoid arthritis (RA), the angiogenic processes, occurring with pannus-formation, may be a therapeutic target. JAK/STAT-pathway may play a role and the aim of this work was to investigate the inhibiting role of a JAK-inhibitor, tofacitinib, on the angiogenic mechanisms occurring during RA. Methods After ethical approval, JAK-1, JAK-3, STAT-1, STAT-3 and VEGF expression was evaluated on RA-synovial-tissues. In vitro, endothelial cells (ECs), stimulated with 20 ng/ml of VEGF and/or 1 μM of tofacitinib, were assessed for tube formation, migration and proliferation, by Matrigel, Boyden chamber assay and ki67 gene-expression. In vivo, 32 mice received collagen (collagen-induced arthritis (CIA)) and 32 mice PBS (control). At day 19, CIA and controls mice were divided: 16 mice receiving vehicle and 16 mice receiving tofacitinib. At day 35, the arthritis score, the thickness of paw joints and the serum levels of VEGF and Ang-2 were evaluated. Results The expression of JAK-1, JAK-3, STAT-1, STAT-3 and VEGF in synovial tissue of RA-patients were significantly higher than healthy controls. In vitro, tofacitinib inhibited the ECs ability to form vessels, to proliferate and to migrate. In vivo, administration of tofacitinib prevented the increase of the arthritis score, the paw thickness, the synovial vessels and VEGF and Ang-2 serum-accumulation, when compared to CIA without tofacitinib. Conclusions We explored the anti-angiogenic role of tofacitinib, reporting its ability to inhibit in vitro the angiogenic mechanisms of ECs and in vivo the formation of new synovial vessels, occurring in CIA model. These findings suggest that the therapeutic effect of tofacitinib during RA may be also related to its anti-angiogenic activity.
Background: Pulmonary arterial hypertension (PAH) is a severe complication of systemic sclerosis (SSc), associated with a progressive elevation in pulmonary vascular resistance and subsequent right heart failure and death. Due to unspecific symptoms, the diagnosis of PAH is often delayed. On this basis, it is of great value to improve current diagnostic methods and develop new strategies for evaluating patients with suspected PAH. Interleukin-32 (IL-32) is a proinflammatory cytokine expressed in damaged vascular cells, and the present study aimed to assess if this cytokine could be a new biomarker of PAH during SSc. Methods: The IL-32 expression was evaluated in the sera and skin samples of 18 SSc-PAH patients, 21 SSc patients without PAH, 15 patients with idiopathic PAH (iPAH) and 14 healthy controls (HCs), by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC). Receiver-operating characteristic (ROC) curves were performed to evaluate the cutoff of IL-32 in identifying patients with PAH. Furthermore, in SSc patients, correlation analyses were performed between IL-32 sera levels and mean pulmonary artery pressure (mPAP) evaluated by right heart catheterization (RHC) and systolic pulmonary artery pressure (sPAP), obtained by echocardiography. Additionally, the number of skin IL-32+ cells was correlated with modified Rodnan skin score (mRSS). Results: In SSc-PAH patients, IL-32 sera levels were significantly higher when compared with SSc patients without PAH and patients affected by iPAH. The analysis of ROC curve showed that IL-32 sera levels above 11.12 pg/ml were able to predict patients with PAH (sensitivity = 90%, specificity = 100%). Furthermore, the IL-32 sera levels of patients with SSc correlated with both mPAP and sPAP. In the skin derived from SSc-PAH patients, the number of IL-32+ cells was significantly increased when compared with the skin derived from SSc patients without PAH, correlating with the mRSS. Conclusion: Our study suggested that sera determination of IL-32 may be a promising approach to evaluate the presence of PAH in SSc patients and together with longitudinal future studies could help to increase the understanding how these biomarkers mirror the vascular changes and the inflammatory process during SSc.
Extracellular matrix (ECM) plays a crucial role in the regulation of both physiological and pathological angiogenesis. ECM homeostasis and function is ensuring by the tightly regulation of the different ECM components including, collagens, proteoglycans and a variety of different glycoproteins. An altered expression of the above ECM molecules as well as an imbalance between the action of matrix remodeling enzymes and their tissue inhibitors is known to be responsible for impaired angiogenesis and fibrosis. Systemic Sclerosis (SSc) is an autoimmune disease characterized by micro-angiopathy, failure of reparative angiogenesis, and excessive fibrosis of the skin and various internal organs, dues to an increased production of ECM. A comprehensive search through Medline/PubMed and Scopus was performed for English-language original papers, using the keywords related to ECM components and SSc. This review will analyze the role played by ECM components in the deregulation of angiogenic mechanisms and in the persistence of a pro-fibrotic phenotype, during SSc. A better knowledge of these processes might provide information about molecules, which could be considered targets for future pro-angiogenic and/or anti-fibrotic therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.