Seventeen Middle Pleistocene crania from the Sima de los Huesos site (Atapuerca, Spain) are analyzed, including seven new specimens. This sample makes it possible to thoroughly characterize a Middle Pleistocene hominin paleodeme and to address hypotheses about the origin and evolution of the Neandertals. Using a variety of techniques, the hominin-bearing layer could be reassigned to a period around 430,000 years ago. The sample shows a consistent morphological pattern with derived Neandertal features present in the face and anterior vault, many of which are related to the masticatory apparatus. This suggests that facial modification was the first step in the evolution of the Neandertal lineage, pointing to a mosaic pattern of evolution, with different anatomical and functional modules evolving at different rates.
Current knowledge of the evolution of the postcranial skeleton in the genus Homo is hampered by a geographically and chronologically scattered fossil record. Here we present a complete characterization of the postcranium of the middle Pleistocene paleodeme from the Sima de los Huesos (SH) and its paleobiological implications. The SH hominins show the following: (i) wide bodies, a plesiomorphic character in the genus Homo inherited from their early hominin ancestors; (ii) statures that can be found in modern human middle-latitude populations that first appeared 1.6-1.5 Mya; and (iii) large femoral heads in some individuals, a trait that first appeared during the middle Pleistocene in Africa and Europe. The intrapopulational size variation in SH shows that the level of dimorphism was similar to modern humans (MH), but the SH hominins were less encephalized than Neandertals. SH shares many postcranial anatomical features with Neandertals. Although most of these features appear to be either plesiomorphic retentions or are of uncertain phylogenetic polarity, a few represent Neandertal apomorphies. Nevertheless, the full suite of Neandertal-derived features is not yet present in the SH population. The postcranial evidence is consistent with the hypothesis based on the cranial morphology that the SH hominins are a sister group to the later Neandertals. Comparison of the SH postcranial skeleton to other hominins suggests that the evolution of the postcranium occurred in a mosaic mode, both at a general and at a detailed level.human evolution | bauplan | postcranial anatomy |
Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA has been retrieved from cave sediments, but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments, and applied them to cave deposits in western Europe and southern Siberia dated to between approximately 200,000 and 50,000 years ago. We detect a population replacement in northern Spain approximately 100,000 years ago, accompanied by a turnover of mitochondrial DNA. We also identify two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.
The Cueva del Camino site (Pinilla del Valle, Madrid) represents the most complete MIS 5 record from the Iberian Peninsula (away from the Mediterranean margin), including a large accumulation of fossilized remains of small and large vertebrates and two human teeth. The presence of carnivores (mainly hyenas) and humans suggests that the site should be interpreted as a spotted hyena den, a human occupation, or both.During an earlier phase of excavation undertaken during the 1980s, an anthropic origin was suggested for the accumulation at the site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.