Introduction Since the early SARS-CoV-2 pandemic, cancer patients have been assumed to be at higher risk for severe COVID-19. Here, we present an analysis of cancer patients from the LEOSS (Lean European Open Survey on SARS-CoV-2 Infected Patients) registry to determine whether cancer patients are at higher risk. Patients and methods We retrospectively analyzed a cohort of 435 cancer patients and 2636 non-cancer patients with confirmed SARS-CoV-2 infection, enrolled between March 16 and August 31, 2020. Data on socio-demographics, comorbidities, cancer-related features and infection course were collected. Age-, sex- and comorbidity-adjusted analysis was performed. Primary endpoint was COVID-19-related mortality. Results In total, 435 cancer patients were included in our analysis. Commonest age category was 76–85 years (36.5%), and 40.5% were female. Solid tumors were seen in 59% and lymphoma and leukemia in 17.5% and 11% of patients. Of these, 54% had an active malignancy, and 22% had recently received anti-cancer treatments. At detection of SARS-CoV-2, the majority (62.5%) presented with mild symptoms. Progression to severe COVID-19 was seen in 55% and ICU admission in 27.5%. COVID-19-related mortality rate was 22.5%. Male sex, advanced age, and active malignancy were associated with higher death rates. Comparing cancer and non-cancer patients, age distribution and comorbidity differed significantly, as did mortality (14% vs 22.5%, p value < 0.001). After adjustments for other risk factors, mortality was comparable. Conclusion Comparing cancer and non-cancer patients, outcome of COVID-19 was comparable after adjusting for age, sex, and comorbidity. However, our results emphasize that cancer patients as a group are at higher risk due to advanced age and pre-existing conditions.
Aims Patients with cardiac disease are considered high risk for poor outcomes following hospitalization with COVID-19. The primary aim of this study was to evaluate heterogeneity in associations between various heart disease subtypes and in-hospital mortality. Methods and results We used data from the CAPACITY-COVID registry and LEOSS study. Multivariable Poisson regression models were fitted to assess the association between different types of pre-existing heart disease and in-hospital mortality. A total of 16 511 patients with COVID-19 were included (21.1% aged 66–75 years; 40.2% female) and 31.5% had a history of heart disease. Patients with heart disease were older, predominantly male, and often had other comorbid conditions when compared with those without. Mortality was higher in patients with cardiac disease (29.7%; n = 1545 vs. 15.9%; n = 1797). However, following multivariable adjustment, this difference was not significant [adjusted risk ratio (aRR) 1.08, 95% confidence interval (CI) 1.02–1.15; P = 0.12 (corrected for multiple testing)]. Associations with in-hospital mortality by heart disease subtypes differed considerably, with the strongest association for heart failure (aRR 1.19, 95% CI 1.10–1.30; P < 0.018) particularly for severe (New York Heart Association class III/IV) heart failure (aRR 1.41, 95% CI 1.20–1.64; P < 0.018). None of the other heart disease subtypes, including ischaemic heart disease, remained significant after multivariable adjustment. Serious cardiac complications were diagnosed in <1% of patients. Conclusion Considerable heterogeneity exists in the strength of association between heart disease subtypes and in-hospital mortality. Of all patients with heart disease, those with heart failure are at greatest risk of death when hospitalized with COVID-19. Serious cardiac complications are rare during hospitalization.
Purpose While more advanced COVID-19 necessitates medical interventions and hospitalization, patients with mild COVID-19 do not require this. Identifying patients at risk of progressing to advanced COVID-19 might guide treatment decisions, particularly for better prioritizing patients in need for hospitalization. Methods We developed a machine learning-based predictor for deriving a clinical score identifying patients with asymptomatic/mild COVID-19 at risk of progressing to advanced COVID-19. Clinical data from SARS-CoV-2 positive patients from the multicenter Lean European Open Survey on SARS-CoV-2 Infected Patients (LEOSS) were used for discovery (2020-03-16 to 2020-07-14) and validation (data from 2020-07-15 to 2021-02-16). Results The LEOSS dataset contains 473 baseline patient parameters measured at the first patient contact. After training the predictor model on a training dataset comprising 1233 patients, 20 of the 473 parameters were selected for the predictor model. From the predictor model, we delineated a composite predictive score (SACOV-19, Score for the prediction of an Advanced stage of COVID-19) with eleven variables. In the validation cohort (n = 2264 patients), we observed good prediction performance with an area under the curve (AUC) of 0.73 ± 0.01. Besides temperature, age, body mass index and smoking habit, variables indicating pulmonary involvement (respiration rate, oxygen saturation, dyspnea), inflammation (CRP, LDH, lymphocyte counts), and acute kidney injury at diagnosis were identified. For better interpretability, the predictor was translated into a web interface. Conclusion We present a machine learning-based predictor model and a clinical score for identifying patients at risk of developing advanced COVID-19.
A liquid chromatography tandem mass spectrometry method for the analysis of ten kinase inhibitors (afatinib, axitinib, bosutinib, cabozantinib, dabrafenib, lenvatinib, nilotinib, osimertinib, ruxolitinib, and trametinib) in human serum and plasma for the application in daily clinical routine has been developed and validated according to the US Food and Drug Administration and European Medicines Agency validation guidelines for bioanalytical methods. After protein precipitation of plasma samples with acetonitrile, chromatographic separation was performed at ambient temperature using a Waters XBridge® Phenyl 3.5 μm (2.1 × 50 mm) column. The mobile phases consisted of water-methanol (9:1, v/v) with 10 mM ammonium bicarbonate as phase A and methanol-water (9:1, v/v) with 10 mM ammonium bicarbonate as phase B. Gradient elution was applied at a flow rate of 400 μL/min. Analytes were detected and quantified using multiple reaction monitoring in electrospray ionization positive mode. Stable isotopically labeled compounds of each kinase inhibitor were used as internal standards. The acquisition time was 7.0 min per run. All analytes and internal standards eluted within 3.0 min. The calibration curves were linear over the range of 2–500 ng/mL for afatinib, axitinib, bosutinib, lenvatinib, ruxolitinib, and trametinib, and 6–1500 ng/mL for cabozantinib, dabrafenib, nilotinib, and osimertinib (coefficients of correlation ≥ 0.99). Validation assays for accuracy and precision, matrix effect, recovery, carryover, and stability were appropriate according to regulatory agencies. The rapid and sensitive assay ensures high throughput and was successfully applied to monitor concentrations of kinase inhibitors in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.