The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko, was delivered to the cometary surface in November 2014. Here we report the precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, based on engineering data in conjunction with operational instrument data. These data also provide information on the mechanical properties (strength and layering) of the comet surface. The first touchdown site, Agilkia, appears to have a granular soft surface (with a compressive strength of 1 kilopascal) at least ~20 cm thick, possibly on top of a more rigid layer. The final landing site, Abydos, has a hard surface.
Thermal and mechanical material properties determine comet evolution and even solar system formation because comets are considered remnant volatile-rich planetesimals. Using data from the Multipurpose Sensors for Surface and Sub-Surface Science (MUPUS) instrument package gathered at the Philae landing site Abydos on comet 67P/Churyumov-Gerasimenko, we found the diurnal temperature to vary between 90 and 130 K. The surface emissivity was 0.97, and the local thermal inertia was 85 ± 35 J m(-2) K(-1)s(-1/2). The MUPUS thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength. A sintered near-surface microporous dust-ice layer with a porosity of 30 to 65% is consistent with the data.
MUPUS, the multi purpose sensor package onboard the Rosetta lander PHILAE, will measure the energy balance and the physical parameters in the near-surface layers -up to about 30 cm depth-of the nucleus of Rosetta's target comet Churyumov-Gerasimenko. Moreover it will monitor changes in these parameters over time as the comet approaches the sun. Among the parameters studied are the density, the porosity, cohesion, the thermal diffusivity and conductivity, and temperature. The data should increase our knowledge of how comets work, and how the coma gases form. The data may also be used to constrain the microstructure of the nucleus material. Changes with time of physical properties will reveal timescales and possibly the nature of processes that modify the material close to the surface. Thereby, the data will indicate how pristine cometary matter sampled and analysed by other experiments on PHILAE really is.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.