Vascular endothelial growth factor (VEGF) is known as a selective endothelial cell mitogen that promotes angiogenesis and increases blood vessel formation in vivo. Here we report that VEGF has protective effects on primary hippocampal neurons against glutamate toxicity by acting on phosphatidylinositol 3‐kinase (PI3‐K)/Akt pathways and mitogen‐activated protein kinase kinase (MEK)/extracellular signal‐regulated kinase (ERK) pathways, operating independently of one another. Decrease in the VEGF's neuroprotective effect resulting from inhibition of either pathway alone was significantly enhanced by simultaneous inhibition of both pathways. However, adenovirus‐mediated expression of either the active form of Akt or of MEK significantly inhibited glutamate‐induced neuronal death. Treatment with antisense ODN against Flk‐1, but not against Flt‐1, blocked the effect of VEGF on the activation of Akt and ERK and glutamate‐induced neuronal death. These findings suggest that VEGF has a protective effect on hippocampal neurons against glutamate‐induced toxicity and that this effect is dependent on PI3‐ K/Akt and MEK/ERK signaling pathways mediated primarily through Flk‐1 receptor.
Survival factors suppress apoptosis by activating the serine/threonine kinase Akt. To investigate the molecular mechanism underlying activated Akt's ability to protect neurons from hypoxia or nitric oxide (NO) toxicity, we focused on the apoptosis-related functions of p53 and caspases. We eliminated p53 by employing p53-deficient neurons and increased p53 by infection with recombinant adenovirus capable of transducing p53 expression, and we now show that p53 is implicated in the apoptosis induced by hypoxia or NO treatments of primary cultured hippocampal neurons. Although hypoxia and NO induced p53, treatment with insulin-like growth factor-1 significantly inhibited caspase-3-like activation, neuronal death and transcriptional activity of p53. These insulin-like growth factor-1 effects are prevented by wortmannin, a phosphatidylinositol 3-kinase inhibitor. Adenovirus-mediated expression of activated-Akt kinase suppressed p53-dependent transcriptional activation of responsive genes such as Bax, suppressed caspase-3-like protease activity and suppressed neuronal cell death with no effect on the cellular accumulation and nuclear translocation of p53. In contrast, overexpression of kinase-defective Akt failed to suppress these same activities. These results suggest a mechanism where Akt kinase activation reduces p53's transcriptional activity that ultimately rescues neurons from hypoxia-or NO-mediated cell death.
Oxygen-regulated protein 150 kD (ORP150) is a novel endoplasmic-reticulum-associated chaperone induced by hypoxia/ischemia. Although ORP150 was sparingly upregulated in neurons from human brain undergoing ischemic stress, there was robust induction in astrocytes. Cultured neurons overexpressing ORP150 were resistant to hypoxemic stress, whereas astrocytes with inhibited ORP150 expression were more vulnerable. Mice with targeted neuronal overexpression of ORP150 had smaller strokes compared with controls. Neurons with increased ORP150 demonstrated suppressed caspase-3-like activity and enhanced brain-derived neurotrophic factor (BDNF) under hypoxia signaling. These data indicate that ORP150 is an integral participant in ischemic cytoprotective pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.