Solar flares are often accompanied by filament/prominence eruptions (~104 K and ~1010−11 cm−3), sometimes leading to coronal mass ejections that directly affect the Earth’s environment1,2. ‘Superflares’ are found on some active solar-type (G-type main-sequence) stars3–5, but the filament eruption–coronal mass ejection association has not been established. Here we show that our optical spectroscopic observation of the young solar-type star EK Draconis reveals evidence for a stellar filament eruption associated with a superflare. This superflare emitted a radiated energy of 2.0 × 1033 erg, and a blueshifted hydrogen absorption component with a high velocity of −510 km s−1 was observed shortly afterwards. The temporal changes in the spectra strongly resemble those of solar filament eruptions. Comparing this eruption with solar filament eruptions in terms of the length scale and velocity strongly suggests that a stellar coronal mass ejection occurred. The erupted filament mass of 1.1 × 1018 g is ten times larger than those of the largest solar coronal mass ejections. The massive filament eruption and an associated coronal mass ejection provide the opportunity to evaluate how they affect the environment of young exoplanets/the young Earth6 and stellar mass/angular momentum evolution7.
In this paper, we present the results from spectroscopic and photometric observations of the M-type flare star YZ CMi in the framework of the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) collaborations during the Transiting Exoplanet Survey Satellite (TESS) observation period. We detected 145 white-light flares from the TESS light-curve and four Hα flares from the OISTER observations performed between 2019 January 16 and 18. Among them, three Hα flares were associated with white-light flares. However, one of them did not show clear brightening in the continuum; during this flare, the Hα line exhibited blue asymmetry which lasted for ∼60 min. The line-of-sight velocity of the blueshifted component is in the range from −80 to −100 km s−1. This suggests that there can be upward flows of chromospheric cool plasma even without detectable red/near-infrared (NIR) continuum brightening. By assuming that the blue asymmetry in the Hα line was caused by a prominence eruption on YZ CMi, we estimated the mass and kinetic energy of the upward-moving material to be 1016–1018 g and 1029.5–1031.5 erg, respectively. The estimated mass is comparable to expectations from the empirical relation between the flare X-ray energy and mass of upward-moving material for stellar flares and solar coronal mass ejections (CMEs). In contrast, the estimated kinetic energy for the non-white-light flare on YZ CMi is roughly two orders of magnitude smaller than that expected from the relation between flare X-ray energy and kinetic energy for solar CMEs. This could be understood by the difference in the velocity between CMEs and prominence eruptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.