There was a remarkable decrease of glomerular kidney function, after only 9 weeks of harvest. The cross-shift increase in serum creatinine may be caused by dehydration (pre-renal dysfunction), and when repeated on a daily basis this may cause permanently reduced GFR.
Most of the missense mutations that have been described in the human SLC12A3 gene encoding the thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC, NCC, or NCCT), as the cause of Gitelman disease, block TSC function by interfering with normal protein processing and glycosylation. However, some mutations exhibit considerable activity. To investigate the pathogenesis of Gitelman disease mediated by such mutations and to gain insights into structure-function relationships on the cotransporter, five functional disease mutations were introduced into mouse TSC cDNA, and their expression was determined in Xenopus laevis oocytes. Western blot analysis revealed immunoreactive bands in all mutant TSCs that were undistinguishable from wild-type TSC. The activity profile was: wild-type TSC (100%) > G627V (66%) > R935Q (36%) = V995M (32%) > G610S (12%) > A585V (6%). Ion transport kinetics in all mutant clones were similar to wild-type TSC, except in G627V, in which a small but significant increase in affinity for extracellular Cl(-) was observed. In addition, G627V and G610S exhibited a small increase in metolazone affinity. The surface expression of wild-type and mutant TSCs was performed by laser-scanning confocal microscopy. All mutants exhibited a significant reduction in surface expression compared with wild-type TSC, with a profile similar to that observed in functional expression analysis. Our data show that biochemical and functional properties of the mutant TSCs are similar to wild-type TSC but that the surface expression is reduced, suggesting that these mutations impair the insertion of a functional protein into the plasma membrane. The small increase in Cl(-) and thiazide affinity in G610S and G627V suggests that the beginning of the COOH-terminal domain could be implicated in defining kinetic properties.
Maternal obesity programmes offspring development. We addressed maternal obesity effects induced by high-fat diets on maternal mammary gland (MG) structure and function and offspring brain, liver and fat outcomes. Mothers were fed control (C, n 5) or obesogenic (MO, n 5) diet from the time they were weaned through pregnancy beginning at 120 d, through lactation. At offspring postnatal day (PND) 20, milk leptin and nutrients were determined. At the end of lactation, maternal liver and MG fatty acid profile were measured. Desaturase (Δ6D and Δ5D) and elongase (ELOVL 5 and ELOVL 2) protein was measured by immunohistochemistry and Western blotting (WB) in the liver and WB in the MG. In mothers, liver, MG and milk fat content were higher in MO than in C. Liver arachidonic acid (AA) and EPA and MG EPA were lower in MO than in C. Liver desaturases were higher in MO. The MG was heavier in MO than in C, with decreased Δ5D expression in MO. Desaturases and elongases were immunolocalised in parenchymal cells of both groups. Milk yield, water, carbohydrate content, EPA and DHA were lower, whereas milk leptin and AA were higher in MO than in C. At PND 21 and 36, brain weight was less and fat depots were greater in MO offspring than in C. MO decreased male absolute brain weight but not female absolute brain weight. In conclusion, maternal obesity induced by an obesogenic diet negatively affects maternal liver and MG function with the production of significant changes in milk composition. Maternal obesity adversely affects offspring metabolism and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.