[1] We report measurements of pH, total alkalinity, air-ice CO 2 fluxes (chamber method), and CaCO 3 content of frost flowers (FF) and thin landfast sea ice. As the temperature decreases, concentration of solutes in the brine skim increases. Along this gradual concentration process, some salts reach their solubility threshold and start precipitating. The precipitation of ikaite (CaCO 3 .6H 2 O) was confirmed in the FF and throughout the ice by Raman spectroscopy and X-ray analysis. The amount of ikaite precipitated was estimated to be 25 mmol kg À1 melted FF, in the FF and is shown to decrease from 19 to 15 mmol kg À1 melted ice in the upper part and at the bottom of the ice, respectively. CO 2 release due to precipitation of CaCO 3 is estimated to be 50 mmol kg À1 melted samples. The dissolved inorganic carbon (DIC) normalized to a salinity of 10 exhibits significant depletion in the upper layer of the ice and in the FF. This DIC loss is estimated to be 2069 mmol kg À1 melted sample and corresponds to a CO 2 release from the ice to the atmosphere ranging from 20 to 40 mmol m À2 d À1. This estimate is consistent with flux measurements of air-ice CO 2 exchange. Our measurements confirm previous laboratory findings that growing young sea ice acts as a source of CO 2 to the atmosphere. CaCO 3 precipitation during early ice growth appears to promote the release of CO 2 to the atmosphere; however, its contribution to the overall release by newly formed ice is most likely minor.
In the family Salmonidae, lake trout ( Salvelinus namaycush ) are considered the least tolerant of salt water. There are, however, sporadic reports of lake trout in coastal, brackish habitats in the Canadian Arctic. Otolith microchemistry analyses conducted on lake trout and Arctic char ( Salvelinus alpinus ) from four Arctic lakes in the West Kitikmeot region of Nunavut, Canada, revealed that 37 of 135 (27%) lake trout made annual marine migrations. Anadromous lake trout were in significantly better condition (K = 1.17) and had significantly higher C:N ratios (3.71) than resident lake trout (K = 1.05 and C:N = 3.34). Anadromous lake trout also had significantly higher δ15N (mean = 16.4‰), δ13C (mean = –22.3‰), and δ34S (mean = 13.43‰) isotope ratios than resident lake trout (means = 12.84‰, –26.21‰, and 1.93‰ for δ15N, δ13C, and δ34S, respectively); results were similar for Arctic char and agree with results from previous studies. Mean age of first migration for lake trout was 13 years, which was significantly older than that for Arctic char (5 years). This could be a reflection of size-dependent salinity tolerance in lake trout, but further research is required. These are the first detailed scientific data documenting anadromy in lake trout.
Abstract.A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO 2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO 3 ·6H 2 O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km 2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO 2 in the ocean surface mixed layer. This corresponds to an air-sea CO 2 uptake of 10.6 mmol m −2 sea ice d −1 or to 3.3 ton km −2 ice floe week −1 . This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m −2 sea ice d −1 . Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO 2 uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.