Study results highlight the high prevalence of respiratory viruses among hospitalized pneumonia cases in Mozambique. HIV infection is an important contributor to the high burden of disease and associated mortality of viral pneumonia. IBI also contributes to a worse prognosis of viral cases. Strategies to prevent mother-to-child transmission of HIV as well as introduction of Hib and pneumococcal vaccines could have a substantial impact on reduction of viral pneumonia and associated mortality among children in rural Africa.
RTS,S/AS01E has been tested in a phase 3 malaria vaccine study with partial efficacy in African children and infants. In a cohort of 1028 subjects from one low (Bagomoyo) and two high (Nanoro, Kintampo) malaria transmission sites, we analysed IgG plasma/serum concentration and avidity to CSP (NANP-repeat and C-terminal domains) after a 3-dose vaccination against time to clinical malaria events during 12-months. Here we report that RTS,S/AS01E induces substantial increases in IgG levels from pre- to post-vaccination ( p < 0.001), higher in NANP than C-terminus (2855 vs 1297 proportional change between means), and higher concentrations and avidities in children than infants ( p < 0.001). Baseline CSP IgG levels are elevated in malaria cases than controls ( p < 0.001). Both, IgG magnitude to NANP (hazard ratio [95% confidence interval] 0.61 [0.48–0.76]) and avidity to C-terminus (0.07 [0.05–0.90]) post-vaccination are significantly associated with vaccine efficacy. IgG avidity to the C-terminus emerges as a significant contributor to RTS,S/AS01E-mediated protection.
BackgroundThe RTS,S/AS01E vaccine provides partial protection against malaria in African children, but immune responses have only been partially characterized and do not reliably predict protective efficacy. We aimed to evaluate comprehensively the immunogenicity of the vaccine at peak response, the factors affecting it, and the antibodies associated with protection against clinical malaria in young African children participating in the multicenter phase 3 trial for licensure.MethodsWe measured total IgM, IgG, and IgG1–4 subclass antibodies to three constructs of the Plasmodium falciparum circumsporozoite protein (CSP) and hepatitis B surface antigen (HBsAg) that are part of the RTS,S vaccine, by quantitative suspension array technology. Plasma and serum samples were analyzed in 195 infants and children from two sites in Ghana (Kintampo) and Mozambique (Manhiça) with different transmission intensities using a case-control study design. We applied regression models and machine learning techniques to analyze immunogenicity, correlates of protection, and factors affecting them.ResultsRTS,S/AS01E induced IgM and IgG, predominantly IgG1 and IgG3, but also IgG2 and IgG4, subclass responses. Age, site, previous malaria episodes, and baseline characteristics including antibodies to CSP and other antigens reflecting malaria exposure and maternal IgGs, nutritional status, and hemoglobin concentration, significantly affected vaccine immunogenicity. We identified distinct signatures of malaria protection and risk in RTS,S/AS01E but not in comparator vaccinees. IgG2 and IgG4 responses to RTS,S antigens post-vaccination, and anti-CSP and anti-P. falciparum antibody levels pre-vaccination, were associated with malaria risk over 1-year follow-up. In contrast, antibody responses to HBsAg (all isotypes, subclasses, and timepoints) and post-vaccination IgG1 and IgG3 to CSP C-terminus and NANP were associated with protection. Age and site affected the relative contribution of responses in the correlates identified.ConclusionsCytophilic IgG responses to the C-terminal and NANP repeat regions of CSP and anti-HBsAg antibodies induced by RTS,S/AS01E vaccination were associated with malaria protection. In contrast, higher malaria exposure at baseline and non-cytophilic IgG responses to CSP were associated with disease risk. Data provide new correlates of vaccine success and failure in African children and reveal key insights into the mode of action that can guide development of more efficacious next-generation vaccines.Electronic supplementary materialThe online version of this article (10.1186/s12916-018-1186-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.