Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, G(E)/G(M), obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic H(e[over →],e(')p[over →]) reaction for three different beam energies at a Q(2)=2.5 GeV(2), spanning a wide range of the kinematic parameter ε. The ratio R, which equals μ(p)G(E)/G(M) in the Born approximation, is found to be independent of ε at the 1.5% level. The ε dependence of the longitudinal polarization transfer component P(ℓ) shows an enhancement of (2.3±0.6)% relative to the Born approximation at large ε.
The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electronproton elastic cross section ratio, R 2γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20°to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb −1 was collected. In the extraction of R 2γ , radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R 2γ , presented here for a wide range of virtual photon polarization 0.456 < ϵ < 0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.
The OLYMPUS experiment was designed to measure the ratio between the positronproton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio,, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25• -75• . Symmetric Møller/Bhabha calorimeters at 1.29• and telescopes of GEM and MWPC detectors at 12• served as luminosity monitors. A total luminosity of approximately 4.5 fb −1 was collected over two running periods in 2012.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.