Active galactic nuclei (AGNs) display many energetic phenomena--broad emission lines, X-rays, relativistic jets, radio lobes--originating from matter falling onto a supermassive black hole. It is widely accepted that orientation effects play a major role in explaining the observational appearance of AGNs. Seen from certain directions, circum-nuclear dust clouds would block our view of the central powerhouse. Indirect evidence suggests that the dust clouds form a parsec-sized torus-shaped distribution. This explanation, however, remains unproved, as even the largest telescopes have not been able to resolve the dust structures. Here we report interferometric mid-infrared observations that spatially resolve these structures in the galaxy NGC 1068. The observations reveal warm (320 K) dust in a structure 2.1 parsec thick and 3.4 parsec in diameter, surrounding a smaller hot structure. As such a configuration of dust clouds would collapse in a time much shorter than the active phase of the AGN, this observation requires a continual input of kinetic energy to the cloud system from a source coexistent with the AGN.
Our Solar System was formed from a cloud of gas and dust. Most of the dust mass is contained in amorphous silicates, yet crystalline silicates are abundant throughout the Solar System, reflecting the thermal and chemical alteration of solids during planet formation. (Even primitive bodies such as comets contain crystalline silicates.) Little is known about the evolution of the dust that forms Earth-like planets. Here we report spatially resolved detections and compositional analyses of these building blocks in the innermost two astronomical units of three proto-planetary disks. We find the dust in these regions to be highly crystallized, more so than any other dust observed in young stars until now. In addition, the outer region of one star has equal amounts of pyroxene and olivine, whereas the inner regions are dominated by olivine. The spectral shape of the inner-disk spectra shows surprising similarity with Solar System comets. Radial-mixing models naturally explain this resemblance as well as the gradient in chemical composition. Our observations imply that silicates crystallize before any terrestrial planets are formed, consistent with the composition of meteorites in the Solar System.
Abstract. We present the first long baseline mid-infrared interferometric observations of the circumstellar disks surrounding Herbig Ae/Be stars. The observations were obtained using the mid-infrared interferometric instrument MIDI at the European Southern Observatory (ESO) Very Large Telescope Interferometer VLTI on Cerro Paranal. The 102 m baseline given by the telescopes UT1 and UT3 was employed, which provides a maximum full spatial resolution of 20 milli-arcsec (mas) at a wavelength of 10 µm. The interferometric signal was spectrally dispersed at a resolution of 30, giving spectrally resolved visibility information from 8 µm to 13.5 µm. We observed seven nearby Herbig Ae/Be stars and resolved all objects. The warm dust disk of HD 100546 could even be resolved in single-telescope imaging. Characteristic dimensions of the emitting regions at 10 µm are found to be from 1 AU to 10 AU. The 10 µm sizes of our sample stars correlate with the slope of the 10-25 µm infrared spectrum in the sense that the reddest objects are the largest ones. Such a correlation would be consistent with a different geometry in terms of flaring or flat (self-shadowed) disks for sources with strong or moderate mid-infrared excess, respectively. We compare the observed spectrally resolved visibilities with predictions based on existing models of passive centrally irradiated hydrostatic disks made to fit the SEDs of the observed stars. We find broad qualitative agreement of the spectral shape of visibilities corresponding to these models with our observations. Quantitatively, there are discrepancies that show the need for a next step in modelling of circumstellar disks, satisfying both the spatial constraints such as are now available from the MIDI observations and the flux constraints from the SEDs in a consistent way.Key words. stars: circumstellar matter -techniques: interferometric -stars: formation -stars: pre-main-sequenceinfrared: stars Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory.
Context. Accretion and outflow processes are of fundamental importance for our understanding of the formation of stars and planetary systems. To trace these processes, diagnostic spectral lines such as the Brγ 2.166 μm line are widely used, although due to a lack of spatial resolution, the origin of the line emission is still unclear. Aims. Employing the AU-scale spatial resolution which can be achieved with infrared long-baseline interferometry, we aim to distinguish between theoretical models which associate the Brγ line emission with mass infall (magnetospheric accretion, gaseous inner disks) or mass outflow processes (stellar winds, X-winds, or disk winds). Methods. Using the VLTI/AMBER instrument, we spatially and spectrally (λ/Δλ = 1500) resolved the inner ( < ∼ 5 AU) environment of five Herbig Ae/Be stars (HD 163296, HD 104237, HD 98922, MWC 297, V921 Sco) in the Brγ emission line as well as in the adjacent continuum. From the measured wavelength-dependent visibilities, we derive the characteristic size of the continuum and Brγ lineemitting region. Additional information is provided by the closure phase, which we could measure both in the continuum wavelength regime (for four objects) as well as in the spectrally resolved Brγ emission line (for one object). The spectro-interferometric data is supplemented by archival and new VLT/ISAAC spectroscopy. Results. For all objects (except MWC 297), we measure an increase of visibility within the Brγ emission line, indicating that the Brγ-emitting region in these objects is more compact than the dust sublimation radius. For HD 98922, our quantitative analysis reveals that the line-emitting region is compact enough to be consistent with the magnetospheric accretion scenario. For HD 163296, HD 104237, MWC 297, and V921 Sco we identify an extended stellar wind or a disk wind as the most likely line-emitting mechanism. Since the stars in our sample cover a wide range of stellar parameters, we also search for general trends and find that the size of the Brγ-emitting region does not seem to depend on the basic stellar parameters (such as the stellar luminosity), but correlates with spectroscopic properties, in particular with the Hα line profile shape. Conclusions. By performing the first high-resolution spectro-interferometric survey on Herbig Ae/Be stars, we find evidence for at least two distinct Brγ line-formation mechanisms. Most significant, stars with a P-Cygni Hα line profile and a high mass-accretion rate seem to show particularly compact Brγ-emitting regions (R Brγ /R cont < 0.2), while stars with a double-peaked or single-peaked Hα-line profile show a significantly more extended Brγ-emitting region (0.6 < ∼ R Brγ /R cont < ∼ 1.4), possibly tracing a stellar wind or a disk wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.