A new method to determine the spin tune is described and tested. In an ideal planar magnetic ring, the spin tune-defined as the number of spin precessions per turn-is given by ν s ¼ γG (γ is the Lorentz factor, G the gyromagnetic anomaly). At 970 MeV=c, the deuteron spins coherently precess at a frequency of ≈120 kHz in the Cooler Synchrotron COSY. The spin tune is deduced from the up-down asymmetry of deuteron-carbon scattering. In a time interval of 2.6 s, the spin tune was determined with a precision of the PRL 115, 094801 (2015) P H Y S I C A L
Excitation functions A(N)(p(p),Theta(c.m.)) of the analyzing power in pp--> elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta p(p) between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30 degrees =Theta(c.m.)=90 degrees using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.
Excitation functions AN (p lab , Θc.m.) of the analyzing power in elastic proton-proton scattering have been measured in an internal target experiment at the Cooler Synchrotron COSY with an unpolarized proton beam and a polarized atomic hydrogen target. Data were taken continuously during the acceleration and deceleration for proton kinetic energies T lab (momenta p lab ) between 0.45 and 2.5 GeV (1.0 and 3.3 GeV/c) and scattering angles 30 • ≤ Θc.m. ≤ 90 • . The results provide excitation functions and angular distributions of high precision and internal consistency. The data can be used as calibration standard between 0.45 and 2.5 GeV. They have significant impact on phase shift solutions, in particular on the spin triplet phase shifts between 1.0 and 1.8 GeV. PACS. 25.40.Cm Elastic proton scattering -13.75.Cs Nucleon-nucleon interactions -24.70.+s Polarization phenomena in reactions -21.30.-x Nuclear forces
The vector and tensor polarizations of a deuteron beam have been measured using elastic deuteron-carbon scattering at 75.6 MeV and deuteron-proton scattering at 270 MeV. After their acceleration to 1170 MeV inside the COSY ring, the polarizations of the deuterons were checked by studying a variety of nuclear reactions using a cluster target at the ANKE magnet spectrometer placed at an internal target position of the storage ring. All these measurements were consistent with the absence of depolarization during acceleration and provide us with a number of secondary standards that can be used in subsequent experiments at the facility
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.