The Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope provides an unprecedented opportunity to study gamma-ray blazars. To capitalize on this opportunity, beginning in late 2007, about a year before the start of LAT science operations, we began a large-scale, fast-cadence 15 GHz radio monitoring program with the 40-m telescope at the Owens Valley Radio Observatory (OVRO). This program began with the 1158 northern (δ > −20 • ) sources from the Candidate Gammaray Blazar Survey (CGRaBS) and now encompasses over 1500 sources, each observed twice per week with about 4 mJy (minimum) and 3% (typical) uncertainty. Here, we describe this monitoring program and our methods, and present radio light curves from the first two years (2008 and 2009). As a first application, we combine these data with a novel measure of light curve variability amplitude, the intrinsic modulation index, through a likelihood analysis to examine the variability properties of subpopulations of our sample. We demonstrate that, with high significance (7-σ), gamma-ray-loud blazars detected by the LAT during its first 11 months of operation vary with about a factor of two greater amplitude than do the gamma-ray quiet blazars in our sample. We also find a significant (3-σ) difference between variability amplitude in BL Lacertae objects and flat-spectrum radio quasars (FSRQs), with the former exhibiting larger variability amplitudes. Finally, low-redshift (z < 1) FS-RQs are found to vary more strongly than high-redshift FSRQs, with 3-σ significance. These findings represent an important step toward understanding why some blazars emit gamma-rays while others, with apparently similar properties, remain silent.
Fermi has provided the largest sample of γ -ray-selected blazars to date. In this work we use a uniformly selected set of 211 BL Lacertae (BL Lac) objects detected by Fermi during its first year of operation. We obtained redshift constraints for 206 out of the 211 BL Lac objects in our sample, making it the largest and most complete sample of BL Lac objects available in the literature. We use this sample to determine the luminosity function of BL Lac objects and its evolution with cosmic time. We find that for most BL Lac classes the evolution is positive, with a space density peaking at modest redshift (z ≈ 1.2). Low-luminosity, high-synchrotron-peaked (HSP) BL Lac objects are an exception, showing strong negative evolution, with number density increasing for z 0.5. Since this rise corresponds to a drop-off in the density of flat-spectrum radio quasars (FSRQs), a possible interpretation is that these HSPs represent an accretion-starved end state of an earlier merger-driven gas-rich phase. We additionally find that the known BL Lac correlation between luminosity and photon spectral index persists after correction for the substantial observational selection effects with implications for the so-called "blazar sequence." Finally, by estimating the beaming corrections to the luminosity function, we find that BL Lac objects have an average Lorentz factor of γ = 6.1 +1.1 −0.8 , and that most are seen within 10 • of the jet axis.
We report on spectroscopic observations covering most of the 475 BL Lacs in the 2 nd Fermi LAT catalog of AGN. Including archival measurements (correcting several erroneous literature values) we now have spectroscopic redshifts for 44% of the BL Lacs. We establish firm lower redshift limits via intervening absorption systems and statistical lower limits via searches for host galaxies for an additional 51% of the sample leaving only 5% of the BL Lacs unconstrained. The new redshifts raise the median spectroscopicz from 0.23 to 0.33 and include redshifts as large as z = 2.471. Spectroscopic redshift minima from intervening absorbers havez = 0.70, showing a substantial fraction at large z and arguing against strong negative evolution. We find that detected BL Lac hosts are bright ellipticals with black hole masses M • ∼ 10 8.5−9 , substantially larger than the mean of optical AGN and LAT Flat Spectrum Radio Quasar samples. A slow increase in M • with z may be due to selection bias. We find that the power-law dominance of the optical spectrum extends to extreme values, but this does not strongly correlate with the γ-ray properties, suggesting that strong beaming is the primary cause of the range in continuum dominance.
Fermi has provided the largest sample of γ-ray selected blazars to date. In this work we use a complete sample of FSRQs detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift ∼0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of γ-ray FSRQs follows a luminosity-dependent density evolution similarly to that of radio-quiet AGN. Also using data from the Swift Burst Alert Telescope we derive the average spectral energy distribution of FSRQs in the 10 keV-100 GeV band and show that there is no correlation of the peak γ-ray luminosity with γ-ray peak frequency. The coupling of the SED and LF allows us to predict that the contribution of FSRQs to the Fermi isotropic γ-ray background is 9.3 +1.6 −1.0 % (±3 % systematic uncertainty) in the 0.1-100 GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of γ = 11.7 +3.3 −2.2 , that most are seen within 5 • of the jet axis, and that they represent only ∼0.1 % of the parent population.
We report on optical spectroscopy of 165 Flat Spectrum Radio Quasars (FSRQs) in the Fermi 1LAC sample, which have helped allow a nearly complete study of this population. Fermi FSRQ show significant evidence for non-thermal emission even in the optical; the degree depends on the γ-ray hardness. They also have smaller virial estimates of hole mass than the optical quasar sample. This appears to be largely due to a preferred (axial) view of the γ-ray FSRQ and non-isotropic (H/R ∼ 0.4) distribution of broad-line velocities. Even after correction for this bias, the Fermi FSRQ show higher mean Eddington ratios than the optical population. A comparison of optical spectral properties with Owens Valley Radio Observatory radio flare activity shows no strong correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.