Improved neoclassical electron confinement in the centre of low-density ECRH plasmas has been observed in the presence of a strong positive radial electric field, which resembles the electron root solution of the neoclassical ambipolarity condition but is obviously driven by the loss of ECRH-generated suprathermal electrons. At higher densities and with NBI heating, a high confinement regime substantially above the ISS95-scaling and different from the H-mode is established with a strongly sheared negative radial electric field at the boundary. The application of plasma-current induced magnetic shear reveals that confinement in W7-AS is essentially determined by perturbations at high-order rational surfaces. For optimum confinement, these resonances have either to be avoided in the boundary region or magnetic shear must be sufficiently large. Independent of its sign, magnetic shear can reduce electron energy transport which is enhanced in the presence of such resonances to the neoclassical level.
In W 7-AS the H mode has been observed for the first time in a currentless stellarator plasma. H modes are achieved with 0.4 MW electron cyclotron resonance heating at 140 GHz at high density. The H phases display all characteristics known from tokamak H modes including edge localized modes (ELMs). The achievement of the H mode in a shear-free stellarator without toroidal current has consequences on //-mode transition and ELM theories.
Electron transport coefficients have been determined in the W7-AS stellarator. The
diffusion and convection coefficients were obtained by modulating the gas feed into the plasma and by
measuring the propagation of the density perturbation. The experiments were carried out at a variety
of plasma densities, heating powers and magnetic fields. The results are summarized in the form of a
scaling expression for the diffusion coefficient. Transient inward convection was found in the boundary
plasma. This convection plays a minor role in the core plasma except with higher heating power, where
outward convection was observed. The results are compared with earlier W7-AS transport results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.