The IHSS soil humic acid (HA) standard and two HAs from soils of very different origin (Chernozem and Ranker) were fractionated by tandem size-exclusion chromatography-polyacrylamide gel electrophoresis. From each HA, three fractions with different molecular sizes (MSs) and electrophoretic mobilities were obtained and investigated for their fluorescence properties and abilityto photoinduce the transformation of 2,4,6-trimethylphenol and herbicide fenuron. Regardless of the source of the HA, the two high MS fractions were found to be very weakly fluorescent. They photoinduced the degradations of fenuron and 2,4,6-trimethylphenol less efficiently than the bulk HA (10-50-fold and 1.4-5.3-fold, respectively). In contrast, the low MS fraction was proved to be fluorescent and to photoinduce the transformation of probes as least as efficiently than the bulk HA. These results show that (i) most of fluorophores and a great part of photoinductive chromophores are located in the low MS fractions of soil HAs and (ii) this distribution of photochemically active constituents may be characteristic across broad soil types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.