The great tit complex is divided into four groups, each containing several subspecies. Even though the groups are known to differ markedly on morphological, vocal and behavioural characters, some hybridization occurs in the regions where they meet. The great tit has often been referred to as an example of a ring species, although this has later been questioned. Here, we have studied the genetic structure and phylogenetic relationships of the subspecies groups to clarify the evolutionary history of the complex using control region sequences of the mitochondrial DNA. The subspecies groups were found to be monophyletic and clearly distinct in mitochondrial haplotypes, and therefore must have had long-independent evolutionary histories. This conflicts with the ring species assignment and supports the formation of secondary contact zones of previously temporarily isolated groups. According to the phylogenetic species concept, all the subspecies groups could be considered as separate species, but if the definition of the biological species concept is followed, none of the subspecies groups is a true species because hybridization still occurs.
The great tit ( Parus major ) has been considered to be the most typical example of an avian ring species. The terminal taxa of the ring ( major and minor sectors) are supposed to be reproductively isolated in a zone of secondary contact in the middle Amur valley, Siberia. Our study combines molecular markers (cytochrome-b ), bioacoustic analyses and morphological characters to judge the ring species status of the great tit complex. Despite a notable percentage of intermediately coloured birds in the mixed population of middle Amur, a lack of mitochondrial introgression between the majo r and minor sectors and a small number of true hybrids among voucher specimens from this area suggest at least a partial reproductive barrier between both sectors. In contrast, variation of morphological and especially acoustic characters along the ring-shaped area and the phylogenetic structure of the P. major group do not match the ring species concept. Bioacoustic and molecular data (cytochrome-b sequences) reveal two large and closely related subspecies blocks, the sectors major and bokharensis in the Western Palaearctic and central Asia, and the sectors minor and cinereus in the Eastern Palaearctic and South-east Asia, respectively. The two western sectors diverged only recently (0.5 Mya) and they were separated from the eastern group by Pleistocene events about 1.5 Mya. Songs from allopatric regions of the two subspecies blocks differ distinctly in frequency parameters and element composition. In the area of secondary contact, males of all phenotypes share the same frequency range of song, close to the range of the typical minor song. Hybrids and major males sing mixed repertoires of typical major and minor strophe types as well as mixed strophes. In contrast, phenotypic minor males display only pure minor strophes. Differences in mate choice and mating success based on repertoire size are believed to uphold the reproductive barrier between major and minor birds in the area of sympatry. Taxonomic consequences suggest three separate species in the Parus major complex: Parus major s.s . (including the very closely related bokharensis sector), Parus minor and Parus cinereus .
The degree to which individuals migrate among particular breeding, migration, and wintering sites can have important implications for prioritizing conservation efforts. Four subspecies of Dunlin (Calidris alpina) migrate along the East Asian−Australasian Flyway. Each subspecies has a distinct and well-defined breeding range, but their migration and winter ranges are poorly defined or unknown. We assessed the migratory connectivity of 3 of these subspecies by evaluating a dataset that encompasses 57 yr (1960–2017), and comprises more than 28,000 Dunlin banding records and 818 observations (71 recaptures and 747 band resightings). We present some of the first evidence that subspecific segregation likely occurs, with arcticola Dunlin wintering in areas of Japan, and other arcticola, actites, and sakhalina Dunlin wintering in areas of the Yellow and China seas. Observations indicate that whether an arcticola Dunlin winters in Japan or the Yellow and China seas is independent of their breeding location, sex, or age. Furthermore, observations indicate that ≥83% of arcticola Dunlin exhibit interannual site fidelity to specific wintering sites. This suggests that the degradation of specific wetland areas may negatively affect particular individuals of a particular subspecies (or combination of subspecies), and, if widespread, could result in population declines. Given the possible biases inherent in analyzing band recovery data, we recommend additional flyway-wide collaboration and the use of lightweight tracking devices and morphological and genetic assignment techniques to better quantify subspecies’ migratory movements and nonbreeding distributions. This information, when combined, will enable effective conservation efforts for this species across the East Asian−Australasian Flyway.
Waterfowl (Anseriformes) and shorebirds (Charadriiformes) are the most common wild vectors of influenza A viruses. Due to their migratory behavior, some may transmit disease over long distances. Migratory connectivity studies can link breeding and nonbreeding grounds while illustrating potential interactions among populations that may spread diseases. We investigated Dunlin (Calidris alpina), a shorebird with a subspecies (C. a. arcticola) that migrates from nonbreeding areas endemic to avian influenza in eastern Asia to breeding grounds in northern Alaska. Using microsatellites and mitochondrial DNA, we illustrate genetic structure among six subspecies: C. a. arcticola,C. a. pacifica,C. a. hudsonia,C. a. sakhalina,C. a. kistchinski, and C. a. actites. We demonstrate that mitochondrial DNA can help distinguish C. a. arcticola on the Asian nonbreeding grounds with >70% accuracy depending on their relative abundance, indicating that genetics can help determine whether C. a. arcticola occurs where they may be exposed to highly pathogenic avian influenza (HPAI) during outbreaks. Our data reveal asymmetric intercontinental gene flow, with some C. a. arcticola short-stopping migration to breed with C. a. pacifica in western Alaska. Because C. a. pacifica migrates along the Pacific Coast of North America, interactions between these subspecies and other taxa provide route for transmission of HPAI into other parts of North America.
Five subspecies of Dunlins (Calidris alpina) that breed in Beringia are potentially sympatric during the non‐breeding season. Studying their ecology during this period requires techniques to distinguish individuals by subspecies. Our objectives were to determine (1) if five morphometric measures (body mass, culmen, head, tarsus, and wing chord) differed between sexes and among subspecies (C. a. actites, arcticola, kistchinski, pacifica, and sakhalina), and (2) if these differences were sufficient to allow for correct classification of individuals using equations derived from discriminant function analyses. We conducted analyses using morphometric data from 10 Dunlin populations breeding in northern Russia and Alaska, USA. Univariate tests revealed significant differences between sexes in most morphometric traits of all subspecies, and discriminant function equations predicted the sex of individuals with an accuracy of 83–100% for each subspecies. We provide equations to determine sex and subspecies of individuals in mixed subspecies groups, including the (1) Western Alaska group of arcticola and pacifica (known to stage together in western Alaska) and (2) East Asia group of arcticola, actites, kistchinski, and sakhalina (known to winter together in East Asia). Equations that predict the sex of individuals in mixed groups had classification accuracies between 75% and 87%, yielding reliable classification equations. We also provide equations that predict the subspecies of individuals with an accuracy of 22–96% for different mixed subspecies groups. When the sex of individuals can be predetermined, the accuracy of these equations is increased substantially. Investigators are cautioned to consider limitations due to age and feather wear when using these equations during the non‐breeding season. These equations will allow determination of sexual and subspecies segregation in non‐breeding areas, allowing implementation of taxonomic‐specific conservation actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.