Based on compiled small mammal trapping data collected over 12 years from Benin and Niger (3701 individual records from 66 sampling sites), located in mainland Africa, we here describe the small mammal community assemblage in urban habitats along the commercial axis connecting the two countries, from the seaport of Cotonou to the Sahelian hinterland, with a particular focus on invasive species. In doing so, we document extant species distributions, which highlight the risks of continuing the range expansion of three synanthropic invasive rodent species, namely black rats (Rattus rattus), brown rats (R. norvegicus), and house mice (Mus musculus). Using various diversity estimates and community ecology approaches, we detect a latitudinal gradient of species richness that significantly decreased Northward. We show that shrews (Crocidura) represent a very important component of micro-mammal fauna in West African towns and villages, especially at lower latitudes. We also demonstrate that invasive and native synanthropic rodents do not distribute randomly in West Africa, which suggests that invasive species dynamics and history differ markedly, and that they involve gradual, as well as human-mediated, long distance dispersal. Patterns of segregation are also observed between native Mastomys natalensis and invasive rats R. rattus and R. norvegicus, suggesting potential native-to-invasive species turn over. Consequences of such processes, especially in terms of public health, are discussed.
Understanding why some exotic species become widespread and abundant in their colonised range is a fundamental issue that still needs to be addressed. Among many hypotheses, newly established host populations may benefit from a parasite loss ("enemy release" hypothesis) through impoverishment of their original parasite communities or reduced infection levels. Moreover, the fitness of competing native hosts may be negatively affected by the acquisition of exotic taxa from invaders ("parasite spillover") and/or by an increased transmission risk of native parasites due to their amplification by invaders ("parasite spillback"). We focused on gastrointestinal helminth communities to determine whether these predictions could explain the ongoing invasion success of the commensal house mouse (Mus musculus domesticus) and black rat (Rattus rattus), as well as the associated decrease in native Mastomys spp., in Senegal. For both invasive species, our results were consistent with the predictions of the enemy release hypothesis. A decrease in overall gastrointestinal helminth prevalence and infracommunity species richness was observed along the invasion gradients as well as lower specific prevalence/abundance (Aspiculuris tetraptera in Mus musculus domesticus, Hymenolepis diminuta in Rattus rattus) on the invasion fronts. Conversely, we did not find strong evidence of GIH spillover or spillback in invasion fronts, where native and invasive rodents co-occurred. Further experimental research is needed to determine whether and how the loss of gastrointestinal helminths and reduced infection levels along invasion routes may result in any advantageous effects on invader fitness and competitive advantage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.