a b s t r a c tBackground: Hypoxaemia is a common complication of pneumonia and a major risk factor for death, but less is known about hypoxaemia in other common conditions. We evaluated the epidemiology of hypoxaemia and oxygen use in hospitalised neonates and children in Nigeria. Methods:We conducted a prospective cohort study among neonates and children ( < 15 years of age) admitted to 12 secondary-level hospitals in southwest Nigeria (November 2015-November 2017) using data extracted from clinical records (documented during routine care). We report summary statistics on hypoxaemia prevalence, oxygen use, and clinical predictors of hypoxaemia. We used generalised linear mixed-models to calculate relative odds of death (hypoxaemia vs not). Findings: Participating hospitals admitted 23,926 neonates and children during the study period. Pooled hypoxaemia prevalence was 22.2% (95%CI 21.2-23.2) for neonates and 10.2% (9.7-10.8) for children. Hypoxaemia was common among children with acute lower respiratory infection (28.0%), asthma (20.4%), meningitis/encephalitis (17.4%), malnutrition (16.3%), acute febrile encephalopathy (15.4%), sepsis (8.7%) and malaria (8.5%), and neonates with neonatal encephalopathy (33.4%), prematurity (26.6%), and sepsis (21.0%). Hypoxaemia increased the adjusted odds of death 6-fold in neonates and 7-fold in children. Clinical signs predicted hypoxaemia poorly, and their predictive ability varied across ages and conditions. Hypoxaemic children received oxygen for a median of 2-3 days, consuming ∼3500 L of oxygen per admission. Interpretation: Hypoxaemia is common in respiratory and non-respiratory acute childhood illness and increases the risk of death substantially. Given the limitations of clinical signs, pulse oximetry is an essential tool for detecting hypoxaemia, and should be part of the routine assessment of all hospitalised neonates and children.
BackgroundImproving oxygen systems may improve clinical outcomes for hospitalised children with acute lower respiratory infection (ALRI). This paper reports the effects of an improved oxygen system on mortality and clinical practices in 12 general, paediatric, and maternity hospitals in southwest Nigeria.Methods and findingsWe conducted an unblinded stepped-wedge cluster-randomised trial comparing three study periods: baseline (usual care), pulse oximetry introduction, and stepped introduction of a multifaceted oxygen system. We collected data from clinical records of all admitted neonates (<28 days old) and children (28 days to 14 years old). Primary analysis compared the full oxygen system period to the pulse oximetry period and evaluated odds of death for children, children with ALRI, neonates, and preterm neonates using mixed-effects logistic regression. Secondary analyses included the baseline period (enabling evaluation of pulse oximetry introduction) and evaluated mortality and practice outcomes on additional subgroups. Three hospitals received the oxygen system intervention at 4-month intervals. Primary analysis included 7,716 neonates and 17,143 children admitted during the 2-year stepped crossover period (November 2015 to October 2017). Compared to the pulse oximetry period, the full oxygen system had no association with death for children (adjusted odds ratio [aOR] 1.06; 95% confidence interval [CI] 0.77–1.46; p = 0.721) or children with ALRI (aOR 1.09; 95% CI 0.50–2.41; p = 0.824) and was associated with an increased risk of death for neonates overall (aOR 1.45; 95% CI 1.04–2.00; p = 0.026) but not preterm/low-birth-weight neonates (aOR 1.30; 95% CI 0.76–2.23; p = 0.366). Secondary analyses suggested that the introduction of pulse oximetry improved oxygen practices prior to implementation of the full oxygen system and was associated with lower odds of death for children with ALRI (aOR 0.33; 95% CI 0.12–0.92; p = 0.035) but not for children, preterm neonates, or neonates overall (aOR 0.97, 95% CI 0.60–1.58, p = 0.913; aOR 1.12, 95% CI 0.56–2.26, p = 0.762; aOR 0.90, 95% CI 0.57–1.43, p = 0.651). Limitations of our study are a lower-than-anticipated power to detect change in mortality outcomes (low event rates, low participant numbers, high intracluster correlation) and major contextual changes related to the 2016–2017 Nigerian economic recession that influenced care-seeking and hospital function during the study period, potentially confounding mortality outcomes.ConclusionsWe observed no mortality benefit for children and a possible higher risk of neonatal death following the introduction of a multifaceted oxygen system compared to introducing pulse oximetry alone. Where some oxygen is available, pulse oximetry may improve oxygen usage and clinical outcomes for children with ALRI.Trial registrationAustralian New Zealand Clinical Trials Registry: ACTRN12617000341325.
Background Oxygen is an essential medical therapy that is poorly available globally. We evaluated the quality of oxygen therapy in 12 secondary-level Nigerian hospitals, including access to oxygen equipment, equipment functionality, healthcare worker knowledge and appropriateness of use. Methods We conducted a three-part evaluation of oxygen access and use involving: (1) facility assessment (including technical evaluation of oxygen equipment), (2) clinical audit (children and neonates admitted January 2014–December 2015) and (3) survey of healthcare worker training and experience on the clinical use of oxygen (November 2015). Results Oxygen access for children and newborns is compromised by faulty equipment, lack of pulse oximetry and inadequate care practices. One hospital used pulse oximetry for paediatric care. Eleven hospitals had some access to oxygen supplies. Testing of 57 oxygen concentrators revealed two (3.5%) that were ‘fit for use’. Overall, 14.4% (3708/25 677) of children and neonates received oxygen some time during their admission; 19.4% (1944/10 000) of hypoxaemic children received oxygen; 38.5% (1217/3161) of children who received oxygen therapy were not hypoxaemic. Conclusions Oxygen access for children in Nigerian hospitals is poor, and likely results in substantial excess mortality. To improve oxygen access for children globally we must focus on actual provision of oxygen to patients—not simply the presence of oxygen equipment at the facility level. This requires a systematic approach to improve both oxygen (access [including equipment, maintenance and affordability]) and oxygen use (including pulse oximetry, guidelines and continuing education).
BackgroundOxygen is a life-saving, essential medicine that is important for the treatment of many common childhood conditions. Improved oxygen systems can reduce childhood pneumonia mortality substantially. However, providing oxygen to children is challenging, especially in small hospitals with weak infrastructure and low human resource capacity.Methods/designThis trial will evaluate the implementation of improved oxygen systems at secondary-level hospitals in southwest Nigeria. The improved oxygen system includes: a standardised equipment package; training of clinical and technical staff; infrastructure support (including improved power supply); and quality improvement activities such as supportive supervision. Phase 1 will involve the introduction of pulse oximetry alone; phase 2 will involve the introduction of the full, improved oxygen system package. We have based the intervention design on a theory-based analysis of previous oxygen projects, and used quality improvement principles, evidence-based teaching methods, and behaviour-change strategies.We are using a stepped-wedge cluster randomised design with participating hospitals randomised to receive an improved oxygen system at 4-month steps (three hospitals per step). Our mixed-methods evaluation will evaluate effectiveness, impact, sustainability, process and fidelity. Our primary outcome measures are childhood pneumonia case fatality rate and inpatient neonatal mortality rate. Secondary outcome measures include a range of clinical, quality of care, technical, and health systems outcomes. The planned study duration is from 2015 to 2018.DiscussionOur study will provide quality evidence on the effectiveness of improved oxygen systems, and how to better implement and scale-up oxygen systems in resource-limited settings. Our results should have important implications for policy-makers, hospital administrators, and child health organisations in Africa and globally.Trial registrationAustralian New Zealand Clinical Trials Registry: ACTRN12617000341325. Retrospectively registered on 6 March 2017.Electronic supplementary materialThe online version of this article (doi:10.1186/s13063-017-2241-8) contains supplementary material, which is available to authorized users.
BackgroundPneumonia and malaria are the leading causes of global childhood mortality. We describe the clinical presentation of children diagnosed with pneumonia and/or malaria, and identify possible missed cases and diagnostic predictors.MethodsProspective cohort study involving children (aged 28 days to 15 years) admitted to 12 secondary‐level hospitals in south‐west Nigeria, from November 2015 to October 2017. We described children diagnosed with malaria and/or pneumonia on admission and identified potential missed cases using WHO criteria. We used logistic regression models to identify associations between clinical features and severe pneumonia and malaria diagnoses.ResultsOf 16 432 admitted children, 16 184 (98.5%) had adequate data for analysis. Two‐thirds (10 561, 65.4%) of children were diagnosed with malaria and/or pneumonia by the admitting doctor; 31.5% (567/1799) of those with pneumonia were also diagnosed with malaria. Of 1345 (8.3%) children who met WHO severe pneumonia criteria, 557 (41.4%) lacked a pneumonia diagnosis. Compared with “potential missed” diagnoses of severe pneumonia, children with “detected” severe pneumonia were more likely to receive antibiotics (odds ratio [OR], 4.03; 2.63‐6.16, P < .001), and less likely to die (OR, 0.72; 0.51‐1.02, P = .067). Of 2299 (14.2%) children who met WHO severe malaria criteria, 365 (15.9%) lacked a malaria diagnosis. Compared with “potential missed” diagnoses of severe malaria, children with “detected” severe malaria were less likely to die (OR, 0.59; 0.38‐0.91, P = 0.017), with no observed difference in antimalarial administration (OR, 0.29; 0.87‐1.93, P = .374). We identified predictors of severe pneumonia and malaria diagnosis.ConclusionPneumonia should be considered in all severely unwell children with respiratory signs, regardless of treatment for malaria or other conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.