We present neutron spin echo experiments that address the much debated topic of dynamic phenomena in polymer melts that are induced by interacting with a confining surface. We find an anchored surface layer that internally is highly mobile and not glassy as heavily promoted in the literature. The polymer dynamics in confinement is, rather, determined by two phases, one fully equal to the bulk polymer and another that is partly anchored at the surface. By strong topological interaction, this phase confines further chains with no direct contact to the surface. These form the often invoked interphase, where the full chain relaxation is impeded through the interaction with the anchored chains. The investigation of liquids under nanoconfinement has been a topic of intense scientific scrutiny for decades [1]. The issues are glass transition, crystallization, and phase separation under confinement [2,3]. Recently, this interest has been amplified by the rising of nanotechnology that aims to create new properties by modifying materials at the nanoscale. Polymers are of particular interest since they offer a large range of applications such as coatings, lubrication, nanocomposites, and in the field of biological macromolecules, biosensors [4].Close to a confining surface, the conformations of a polymer are significantly restricted [5]. In addition, the interactions with the surface will strongly affect the dynamics. Related issues such as adsorption, friction, network formation, effects on the entanglement density, and polymer density changes under confinement have been studied [6][7][8][9]. The importance of these phenomena thereby depends on the type of polymer, the specificity of the interactions, and the topology of the confinement. In particular, experimental results have been interpreted in terms of the formation of a glassy polymer layer close to surfaces [7]. Furthermore, the existence of an interphase with properties between those of the glassy layer and the bulk has been hypothesized [10][11][12].A large number of experimental studies have focused on nanoparticles dispersed in a polymer matrix. Whereas for noninteracting polymers significant effects only occur at high particle loadings, the addition of nanoparticles that interact with a polymer matrix induces dramatic property changes for the resulting polymer nanocomposite [7,9,10,13,14]. In particular, it has been reported that the interaction between OH groups on the surface of nanoparticles and locally polar poly(ethylene oxide) (PEO) or polydimethylsiloxane (PDMS) chains lead to the formation of a glassy polymer layer [7,10,13]. Theoretical work and computer simulations of chain adsorption as a function of adsorption strength reveal the existence of different chain conformations including trains, loops, and tails [14].Here, we present an investigation on the dynamics of PDMS chains confined in anodic aluminum oxide (AAO) nanopores. We find that PDMS adsorbs at the surface. However, the formed layer is internally highly mobile and not at all glassy. The siz...
We performed quasielastic neutron scattering experiments and atomistic molecular dynamics simulations on a poly(ethylene oxide) (PEO) homopolymer system above the melting point. The excellent agreement found between both sets of data, together with a successful comparison with literature diffraction results, validates the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field used to produce our dynamic runs and gives support to their further analysis. This provided direct information on magnitudes which are not accessible from experiments such as the radial probability distribution functions of specific atoms at different times and their moments. The results of our simulations on the H-motions and different experiments indicate that in the high-temperature range investigated the dynamics is Rouse-like for Q-values below approximately 0.6 A(-1). We then addressed the single chain dynamic structure factor with the simulations. A mode analysis, not possible directly experimentally, reveals the limits of applicability of the Rouse model to PEO. We discuss the possible origins for the observed deviations.
Intrinsically disordered proteins lack a well-defined folded structure and contain a high degree of structural freedom and conformational flexibility, which is expected to enhance binding to their physiological targets. In solution and in the lipid-free state, myelin basic protein belongs to that class of proteins. Using small-angle scattering, the protein was found to be structurally disordered similar to Gaussian chains. The combination of structural and hydrodynamic information revealed an intermediary compactness of the protein between globular proteins and random coil polymers. Modeling by a coarse-grained structural ensemble gave indications for a compact core with flexible ends. Neutron spin-echo spectroscopy measurements revealed a large contribution of internal dynamics to the overall diffusion. The experimental results showed a high flexibility of the structural ensemble. Displacement patterns along the first two normal modes demonstrated that collective stretching and bending motions dominate the internal modes. The observed dynamics represent nanosecond conformational fluctuations within the reconstructed coarse-grained structural ensemble, allowing the exploration of a large configurational space. In an alternative approach, we investigated if models from polymer theory, recently used for the interpretation of fluorescence spectroscopy experiments on disordered proteins, are suitable for the interpretation of the observed motions. Within the framework of the Zimm model with internal friction (ZIF), a large offset of 81.6 ns is needed as an addition to all relaxation times due to intrachain friction sources. The ZIF model, however, shows small but systematic deviations from the measured data. The large value of the internal friction leads to the breakdown of the Zimm model.
We show that weak patchy attractions markedly slow down protein diffusion under conditions prevailing in living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.