Necrotic cell death during Mycobacterium tuberculosis (Mtb) infection is considered host detrimental since it facilitates mycobacterial spread. Ferroptosis is a type of regulated necrosis induced by accumulation of free iron and toxic lipid peroxides. We observed that Mtb-induced macrophage necrosis is associated with reduced levels of glutathione and glutathione peroxidase-4 (Gpx4), along with increased free iron, mitochondrial superoxide, and lipid peroxidation, all of which are important hallmarks of ferroptosis. Moreover, necrotic cell death in Mtb-infected macrophage cultures was suppressed by ferrostatin-1 (Fer-1), a well-characterized ferroptosis inhibitor, as well as by iron chelation. Additional experiments in vivo revealed that pulmonary necrosis in acutely infected mice is associated with reduced Gpx4 expression as well as increased lipid peroxidation and is likewise suppressed by Fer-1 treatment. Importantly, Fer-1–treated infected animals also exhibited marked reductions in bacterial load. Together, these findings implicate ferroptosis as a major mechanism of necrosis in Mtb infection and as a target for host-directed therapy of tuberculosis.
To determine whether leukocytes need to open endothelial cell contacts during extravasation, we decided to generate mice with strongly stabilized endothelial junctions. To this end, we replaced VE-cadherin genetically by a VE-cadherin-a-catenin fusion construct. Such mice were completely resistant to the induction of vascular leaks by VEGF or histamine. Neutrophil or lymphocyte recruitment into inflamed cremaster, lung and skin were strongly inhibited in these mice, documenting the importance of the junctional route in vivo. Surprisingly, lymphocyte homing into lymph nodes was not inhibited. VE-cadherin-a-catenin associated more intensely with the actin cytoskeleton as demonstrated by its membrane mobility and detergent extractability. Our results establish the junctional route as the main pathway for extravasating leukocytes in several, although not in all tissues. Furthermore, in these tissues, plasticity of the VE-cadherin-catenin complex is central for the leukocyte diapedesis mechanism.
We have shown recently that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial-specific membrane protein, associates with vascular endothelial (VE)–cadherin and enhances VE-cadherin function in transfected cells (Nawroth, R., G. Poell, A. Ranft, U. Samulowitz, G. Fachinger, M. Golding, D.T. Shima, U. Deutsch, and D. Vestweber. 2002. EMBO J. 21:4885–4895). We show that VE-PTP is indeed required for endothelial cell contact integrity, because down-regulation of its expression enhanced endothelial cell permeability, augmented leukocyte transmigration, and inhibited VE-cadherin–mediated adhesion. Binding of neutrophils as well as lymphocytes to endothelial cells triggered rapid (5 min) dissociation of VE-PTP from VE-cadherin. This dissociation was only seen with tumor necrosis factor α–activated, but not resting, endothelial cells. Besides leukocytes, vascular endothelial growth factor also rapidly dissociated VE-PTP from VE-cadherin, indicative of a more general role of VE-PTP in the regulation of endothelial cell contacts. Dissociation of VE-PTP and VE-cadherin in endothelial cells was accompanied by tyrosine phoshorylation of VE-cadherin, β-catenin, and plakoglobin. Surprisingly, only plakoglobin but not β-catenin was necessary for VE-PTP to support VE-cadherin adhesion in endothelial cells. In addition, inhibiting the expression of VE-PTP preferentially increased tyrosine phosphorylation of plakoglobin but not β-catenin. In conclusion, leukocytes interacting with endothelial cells rapidly dissociate VE-PTP from VE-cadherin, weakening endothelial cell contacts via a mechanism that requires plakoglobin but not β-catenin.
The molecular mechanisms underlying the severe lung pathology that occurs during SARS-CoV infections remain incompletely understood. The largest of the SARS-CoV accessory protein open reading frames (SARS 3a) oligomerizes, dynamically inserting into late endosomal, lysosomal, and trans-Golgi-network membranes. While previously implicated in a non-inflammatory apoptotic cell death pathway, here we extend the range of SARS 3a pathophysiologic targets by examining its effects on necrotic cell death pathways. We show that SARS 3a interacts with Receptor Interacting Protein 3 (Rip3), which augments the oligomerization of SARS 3a helping drive necrotic cell death. In addition, by inserting into lysosomal membranes SARS 3a triggers lysosomal damage and dysfunction. Consequently, Transcription Factor EB (TFEB) translocates to the nucleus increasing the transcription of autophagy- and lysosome-related genes. Finally, SARS 3a activates caspase-1 either directly or via an enhanced potassium efflux, which triggers NLRP3 inflammasome assembly. In summary, Rip3-mediated oligomerization of SARS 3a causes necrotic cell death, lysosomal damage, and caspase-1 activation—all likely contributing to the clinical manifestations of SARS-CoV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.