Tumor-suppressor genes (TSGs) have been classically defined as genes whose loss of function in tumor cells contributes to the formation and/or maintenance of the tumor phenotype. TSGs containing nonsense mutations may not be expressed because of nonsense-mediated RNA decay (NMD). We combined inhibition of the NMD process, which clears transcripts that contain nonsense mutations, with the application of high-density single-nucleotide polymorphism arrays analysis to discriminate allelic content in order to identify candidate TSGs in five breast cancer cell lines. We identified ARID1A as a target of NMD in the T47D breast cancer cell line, likely as a consequence of a mutation in exon-9, which introduces a premature stop codon at position Q944. ARID1A encodes a human homolog of yeast SWI1, which is an integral member of the hSWI/SNF complex, an ATPdependent, chromatin-remodeling, multiple-subunit enzyme. Although we did not find any somatic mutations in 11 breast tumors, which show DNA copy-number loss at the 1p36 locus adjacent to ARID1A, we show that low ARID1A RNA or nuclear protein expression is associated with more aggressive breast cancer phenotypes, such as high tumor grade, in two independent cohorts of over 200 human breast cancer cases each. We also found that low ARID1A nuclear expression becomes more prevalent during the later stages of breast tumor progression. Finally, we found that ARID1A reexpression in the T47D cell line results in significant inhibition of colony formation in soft agar. These results suggest that ARID1A may be a candidate TSG in breast cancer.
The major obstacle in successfully treating triple-negative breast cancer (TNBC) is resistance to cytotoxic chemotherapy, the mainstay of treatment in this disease. Previous preclinical models of chemoresistance in TNBC have suffered from a lack of clinical relevance. Using a single high dose chemotherapy treatment, we developed a novel MDA-MB-436 cell-based model of chemoresistance characterized by a unique and complex morphologic phenotype, which consists of polyploid giant cancer cells giving rise to neuron-like mononuclear daughter cells filled with smaller but functional mitochondria and numerous lipid droplets. This resistant phenotype is associated with metabolic reprogramming with a shift to a greater dependence on fatty acids and oxidative phosphorylation. We validated both the molecular and histologic features of this model in a clinical cohort of primary chemore-sistant TNBCs and identified several metabolic vulnerabilities including a dependence on PLIN4, a perilipin coating the observed lipid droplets, expressed both in the TNBCresistant cells and clinical chemoresistant tumors treated with neoadjuvant doxorubicin-based chemotherapy. These findings thus reveal a novel mechanism of chemotherapy resistance that has therapeutic implications in the treatment of drug-resistant cancer.Implications: These findings underlie the importance of a novel morphologic-metabolic phenotype associated with chemotherapy resistance in TNBC, and bring to light novel therapeutic targets resulting from vulnerabilities in this phenotype, including the expression of PLIN4 essential for stabilizing lipid droplets in resistant cells.
RAD51D is a key player in DNA repair by homologous recombination (HR), and truncating variant carriers have an increased risk for ovarian cancer. However, the contribution of nontruncating variants to cancer predisposition remains uncertain. Using deep sequencing and case-control genotyping studies, we show that in French Canadians, the missense variant c.620C>T;p.S207L is highly prevalent and is associated with a significantly increased risk for ovarian high-grade serous carcinoma (HGSC; 3.8% cases vs. 0.2% controls). The frequency of the p.S207L variant did not significantly differ from that of controls in breast, endometrial, pancreas, or colorectal adenocarcinomas. Functionally, we show that this mutation impairs HR by disrupting the RAD51D-XRCC2 interaction and confers PARP inhibitor sensitivity. These results highlight the importance of a functional RAD51D-XRCC2 interaction to promote HR and prevent the development of HGSC. This study identifies c.620C>T;p.S207L as the first bona fide pathogenic missense cancer susceptibility allele and supports the use of targeted PARP-inhibitor therapies in ovarian cancer patients carrying deleterious missense variants. .
IntroductionHigh prion protein (PrP) levels are associated with breast, colon and gastric cancer resistance to treatment and with a poor prognosis for the patients. However, little is known about the underlying molecular mechanism(s) regulating human PrP gene (PRNP) expression in cancers. Because endoplasmic reticulum (ER) stress is associated with solid tumors, we investigated a possible regulation of PRNP gene expression by ER stress.MethodsPublished microarray databases of breast cancer tissues and breast carcinoma cell lines were analyzed for PrP mRNA and ER stress marker immunoglobulin heavy chain binding protein (BiP) levels. Breast cancer tissue microarrays (TMA) were immunostained for BiP and PrP. Breast carcinoma MCF-7, MDA-MB-231, HS578T and HCC1500 cells were treated with three different ER stressors - Brefeldin A, Tunicamycin, Thapsigargin - and levels of PrP mRNA or protein assessed by RT-PCR and Western blot analyses. A human PRNP promoter-luciferase reporter was used to assess transcriptional activation by ER stressors. Site-directed mutagenesis identified the ER stress response elements (ERSE). Chromatin immunoprecipitation (ChIP) analyses were done to identify the ER stress-mediated transcriptional regulators. The role of cleaved activating transcription factor 6α (ΔATF6α) and spliced X-box protein-1 (sXBP1) in PRNP gene expression was assessed with over-expression or silencing techniques. The role of PrP protection against ER stress was assessed with PrP siRNA and by using Prnp null cell lines.ResultsWe find that mRNA levels of BiP correlated with PrP transcript levels in breast cancer tissues and breast carcinoma cell lines. PrP mRNA levels were enriched in the basal subtype and were associated with poor prognosis in breast cancer patients. Higher PrP and BiP levels correlated with increasing tumor grade in TMA. ER stress was a positive regulator of PRNP gene transcription in MCF-7 cells and luciferase reporter assays identified one ER stress response element (ERSE) conserved among primates and rodents and three primate-specific ERSEs that regulated PRNP gene expression. Among the various transactivators of the ER stress-regulated unfolded protein response (UPR), ATF6α and XBP1 transactivated PRNP gene expression, but the ability of these varied in different cell types. Functionally, PrP delayed ER stress-induced cell death.ConclusionsThese results establish PRNP as a novel ER stress-regulated gene that could increase survival in breast cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.