This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The drivers of plant richness at fine spatial scales in steppe ecosystems are still not sufficiently understood. Our main research questions were: (i) How rich in plant species are the natural steppes of Southern Siberia compared to natural and semi-natural grasslands in other regions of the Palaearctic? (ii) What are the main environmental drivers of the diversity patterns in these steppes? (iii) What are the diversity–environment relationships and do they vary between spatial scales and among different taxonomic groups? We sampled the steppe vegetation (vascular plants, bryophytes and lichens) in Khakassia (Russia) with 39 nested-plot series (0.0001–100-m2 plot size) and 54 additional 10-m2 quadrats across the regional range of steppe types and measured various environmental variables. We measured β-diversity using z-values of power-law species–area relationships. GLM analyses were performed to assess the importance of environmental variables as predictors of species richness and z-value. Khakassian steppes showed both high α- and β-diversity. We found significant scale dependence for the z-values, which had their highest values at small spatial scales and then decreased exponentially. Total species richness was controlled predominantly by heat load index, mean annual precipitation, humus content and soil skeleton content. The positive role of soil pH was evident only for vascular plant species richness. Similar to other studies, we found that the importance of environmental factors strongly differed among taxonomic groups and across spatial scales, thus highlighting the need to study more than one taxon and more than one plot size to get a reliable picture
S. (2019) Formalized classification of semi-dry grasslands in central and eastern Europe.-Preslia 91: 25-49 European semi-dry grasslands are among the most species-rich vegetation types in the northern hemisphere and form an important part of the habitat mosaics in the forest-steppe zone. However, there is no comprehensive evaluation of the variation in their composition and the phytosociological classification of these grasslands. For the syntaxonomic revision, we used a dataset of 34,173 vegetation plot records (relevés) from central and eastern Europe, which were assigned to the class Festuco-Brometea using the diagnostic species listed in the EuroVegChecklist. To determine the diagnostic species of the orders, we used a TWINSPAN classification of the whole dataset. Of the total dataset, 15,449 relevés were assigned to the order Brachypodietalia pinnati, which corresponds to semi-dry grasslands. This subset was again classified using TWINSPAN. Formal definitions of the following alliances were established: Mesobromion erecti, Cirsio-Brachypodion pinnati (incl. Fragario-Trifolion montani, Agrostio-Avenulion schellianae, Scabioso ochroleucae-Poion angustifoliae and Adonido vernalis-Stipion tirsae), Scorzonerion villosae and Chrysopogono-Danthonion. Another alliance, Armerion elongatae (= Koelerio-Phleion phleoidis p.p.), is transitional towards the class Koelerio-Corynephoretea and its status needs further evaluation. We also established formal definitions of all of the associations of Mesobromion and Cirsio-Brachypodion within the area studied. Associations were identified using (i) a TWINSPAN classification of the whole order, (ii) TWINSPAN classifications of regionally restricted data sets (usually all Brachypodietalia plots in one country) and (iii) existing national classification schemes. All formal definitions were written in the expert system language of the JUICE program. To obtain a more complete picture of the floristic similarities and gradients, we performed a DCA ordination of the associations. Our results revealed that meadow steppes in the forest-steppe zone in eastern Europe are very similar to semi-dry grasslands in central Europe.
Motivation Indicator values are numerical values used to characterize the ecological niches of species and to estimate their occurrence along gradients. Indicator values on climatic and edaphic niches of plant species have received considerable attention in ecological research, whereas data on the optimal positioning of species along disturbance gradients are less developed. Here, we present a new data set of disturbance indicator values identifying optima along gradients of natural and anthropogenic disturbance for 6382 vascular plant species based on the analysis of 736,366 European vegetation plots and using expert‐based characterization of disturbance regimes in 236 habitat types. The indicator values presented here are crucial for integrating disturbance niche optima into large‐scale vegetation analyses and macroecological studies. Main types of variables contained We set up five main continuous indicator values for European vascular plants: disturbance severity, disturbance frequency, mowing frequency, grazing pressure and soil disturbance. The first two indicators are provided separately for the whole community and for the herb layer. We calculated the values as the average of expert‐based estimates of disturbance values in all habitat types where a species occurs, weighted by the number of plots in which the species occurs within a given habitat type. Spatial location and grain Europe. Vegetation plots ranging in size from 1 to 1000 m2. Time period and grain Vegetation plots mostly sampled between 1956 and 2013 (= 5th and 95th quantiles of the sampling year, respectively). Major taxa and level of measurement Species‐level indicator values for vascular plants. Software format csv file.
Aim The steppe grasslands of eastern Central Europe are exceptionally species rich and valuable from a nature conservation point of view. However, their historical biogeography is still poorly understood. Here we use the regional diversity of habitat specialists and chloroplast DNA data to investigate potential long‐term refugia of steppe species in this region. Location Pannonian Basin and adjacent regions; SW Russia. Taxon Vascular plants. Methods After identifying habitat specialists of the three main steppe types (meadow steppes, grass steppes and rocky steppes), we compiled their regional presence–absence in grid cells of 75 km × 75 km. We analysed the dependency of habitat specialist diversity to climate, topographic heterogeneity and geographical distance to potential refugia. For genetic analysis, we sampled three or four habitat specialists of each steppe type and used cpDNA markers to investigate intraspecific diversity and geographical distribution of haplotypes. We also tested for correspondence between the number of habitat specialists and haplotype diversity. Results Climate and topography explained between 40% and 63% of the variance in habitat specialist diversity. Adding geographical distance to potential refugia increased the explained variance in the models for all steppe types. Chloroplast haplotypes featured a complex pattern across the study area. Several species showed a strong geographical differentiation, suggesting migration waves from multiple refugia with only limited subsequent genetic intermixture. Maximum haplotype diversity in a region showed a better correlation with the number of habitat specialists per steppe type than mean haplotype diversity. Main conclusions We can clearly reject the scenario of a late‐Holocene immigration of steppe species from areas outside the Pannonian Basin. Most species must have been present in the region since at least the early Holocene, highlighting the importance of the lower mountain ranges surrounding the Pannonian Basin as long‐term refugia for European steppe species. Dispersal limitation and resulting migration lags seem to have a strong influence on the distribution of steppe species in Central Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.