Introduction. One of the most urgent problem of modern medicine is the fight against the disease caused by the Human Immunodeficiency Virus (HIV) – HIV infection. The chemical compounds have improved the situation for infected people, but they are toxic, disrupt the metabolism and cannot eliminate the integrated virus from the body. The emergence of resistant HIV strains makes these treatments ineffective. Often, the death of HIV-infected people occurs as a result of the development of opportunistic infections caused by viruses of the Herpesviridae family. Therefore, the search for new therapeutic and preventive drugs that are less toxic and active against several viruses at the same time is relevant. Basidiomycetes, higher fungi, are a source of medicinal compounds that have antimicrobial properties, as well as antiviral ones. Humic compounds (HS) of various nature also have antiviral activity.The aim of the study was to obtain nontoxic compounds from the basidiomycete Inonotus obliquus and humic compounds from brown coals and to test their activity against viruses that are pathogenic to humans: HIV and Herpes Simplex Virus (HSV).Material and methods. The antiviral activity of melanin extracts obtained from the culture of the chaga fungus Inonotus obliquus and HS from the brown coal of the Kansko-Achinsk Deposit was studied using a model of MT-4 lymphoblastoid cells infected with HIV type 1 (HIV–1) strains and a monolayer culture of Vero cells infected with HSV type 1 (HSV-1) using virological and statistical research methods.Results and discussion. It was found that all the studied compounds did not have a cytotoxic effect on cells at a concentration of 100 mcg/ml. It was shown that extracts of basidiomycetes and HS have antiviral activity against HIV-1 and HSV-1. EC 50 (50%-effective concentration) for HIV-1 was 3.7–5.0 mcg/ml, selectivity index 28–35. Antiherpetic activity was detected at a dose of 50–100 mcg/ml. The antiviral effectiveness of melanin compounds was established both in the «preventive» (2 hours before cell infection) and in the «therapeutic» regimen of drug administration, both for HIV-1 and HSV-1. The presence of antiviral activity of melanin and HS in relation to the RNA-containing HIV-1 virus and DNA-containing HSV-1 virus in our study coincides with the results of a number of authors in relation to influenza viruses, herpes virus, HIV, hepatitis B virus, Coxsackievirus, smallpox vaccine virus, which suggests that the type of nucleic acid in the virus does not play a fundamental role in the antiviral action of these drugs. It is also clear that HS is effective against both enveloped and non-enveloped viruses.Conclusion. In general, it can be concluded that melanin and humic compounds are characterized by low toxicity in the presence of both virucidal and antiviral activity. This allows us to consider the studied compounds as the basis for creating safe medicines that are effective against pathogens of various viral infections.
One of the approaches to enhance bioavailability of nucleoside reverse transcriptase HIV inhibitors consists in design of their prodrugs based on 1,3-diacylglycerols, which may simulate nature lipids metabolic pathways promoting the improvement of drug delivery to the target cells. Glycerolipidic AZT conjugates with different functional phosphoric centers were synthesized by H-phosphonate technique in the present work. Study of prepared prodrugs sensibility to the chemical and enzymatic hydrolysis (in buffer solution and under the influence of pancreatic lipase) and also study of their anti-HIV activity on the T-lymphoid human MT-4 cells in regarding to virus HIV-1(899A) strain were carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.